Magic Animate
magic-research / magic-animate
[CVPR 2024] MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model
MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model
Zhongcong Xu
·
Jianfeng Zhang
·
Jun Hao Liew
·
Hanshu Yan
·
Jia-Wei Liu
·
Chenxu Zhang
·
Jiashi Feng
·
Mike Zheng Shou
National University of Singapore | ByteDance
📢 News
- [2023.12.4] Release inference code and gradio demo. We are working to improve MagicAnimate, stay tuned!
- [2023.11.23] Release MagicAnimate paper and project page.
🏃♂️ Getting Started
Download the pretrained base models for StableDiffusion V1.5 and MSE-finetuned VAE.
Download our MagicAnimate checkpoints.
Please follow the huggingface download instructions to download the above models and checkpoints, git lfs
is recommended.
Place the based models and checkpoints as follows:
magic-animate
|----pretrained_models
|----MagicAnimate
|----appearance_encoder
|----diffusion_pytorch_model.safetensors
|----config.json
|----densepose_controlnet
|----diffusion_pytorch_model.safetensors
|----config.json
|----temporal_attention
|----temporal_attention.ckpt
|----sd-vae-ft-mse
|----config.json
|----diffusion_pytorch_model.safetensors
|----stable-diffusion-v1-5
|----scheduler
|----scheduler_config.json
|----text_encoder
|----config.json
|----pytorch_model.bin
|----tokenizer
…I tried Magic Animate with a super famous Japanese comedian’s photo on Google Colab T4(free tier), but the result wasn’t what I expected lol.
But still, I think Magic Animate is awesome.
Another one that is kind of funny.
The following is the Google Colab I used.
llm_on_GoogleColab/MagicAnimate_colab.ipynb at main · koji/llm_on_GoogleColab
Contribute to koji/llm_on_GoogleColab development by creating an account on GitHub.
github.com
run LLMs on Google Colab
Llama2
Mistral-7B
https://github.com/koji/llm_on_GoogleColab/blob/main/Mistral-7B.ipynb
Japanese StableLM Instruct Beta 7B
Calm 7B Chat
https://github.com/koji/llm_on_GoogleColab/blob/main/Calm2_7B_Chat_llama_cpp_python.ipynb
Whisper large-v3
https://github.com/koji/llm_on_GoogleColab/blob/main/Whisper_large_v3.ipynb
SDXL Turbo with Simple Gradio UI
https://github.com/koji/GoogleColab/blob/main/sdxl_turbo_simple_ui/sdxl_turbo_simple_ui.ipynb
imp_v1_3b
https://github.com/koji/GoogleColab/blob/main/SegMoE.ipynb
SegMoE
https://github.com/koji/GoogleColab/blob/main/SegMoE.ipynb
Llama3.2-vision + Ollama
https://github.com/koji/GoogleColab/blob/main/llama3_2_vision.ipynb
Llama3.2-vision + transformers
https://github.com/koji/GoogleColab/tree/main/llama3_2_vision%2Btransformers
Note
If you run the above Colab on T4, you will need to reduce sampling from 25 to around 15(12–15) because of T4’s memory size.
The entire process will take around 10 minutes.
Top comments (0)