DEV Community

Alkesh Ghorpade
Alkesh Ghorpade

Posted on • Originally published at alkeshghorpade.me

LeetCode - First Missing Positive

Problem statement

Given an unsorted integer array nums, return the smallest missing positive integer.

You must implement an algorithm that runs in O(n) time and uses constant extra space.

Problem statement taken from: https://leetcode.com/problems/first-missing-positive

Example 1:

Input: nums = [1, 2, 0]
Output: 3
Explanation: The numbers in the range [1, 2] are all in the array.
Enter fullscreen mode Exit fullscreen mode

Example 2:

Input: nums = [3, 4, -1, 1]
Output: 2
Explanation: 1 is in the array but 2 is missing.
Enter fullscreen mode Exit fullscreen mode

Example 3:

Input: nums = [7, 8, 9, 11, 12]
Output: 1
Explanation: The smallest positive integer 1 is missing.
Enter fullscreen mode Exit fullscreen mode

Constraints:

- 1 <= nums.length <= 10^5
- -2^31 <= nums[i] <= 2^31 - 1
Enter fullscreen mode Exit fullscreen mode

Explanation

Brute force approach

The naive approach is to run two nested for loops and identify the first missing positive integer. The maximum positive number in an array of size n will be n + 1.

The outer for loop starts from 1 and ends at n + 1. We linearly search from 1 to n + 1 in the array. If any positive integer is missing in the sequence, we will return that value.

The C++ snippet of the above approach is as follows:

int firstMissingPositive(vector<int>& nums) {
    int n = nums.size();
    bool missingNumber = false;

    for (int i = 1; i <= n + 1; i = i + 1) {
        missingNumber = true;

        for (int j = 0; j < n; j = j + 1) {
            if (nums[j] == i) {
                missingNumber = false;
                break;
            }
        }

        if(missingNumber)
            return i;
    }
}
Enter fullscreen mode Exit fullscreen mode

The time complexity of this approach is O(n^2). We are not using any additional space, so the space complexity is O(1).

Sorting

We can optimize the time complexity using sorting. We first sort the array using QuickSort or HeapSort. Then we iterate over the array linearly to find the first missing positive integer.

The C++ snippet of this approach is as follows:

int firstMissingPositive(vector<int>& nums) {
    sort(nums.begin(), nums.end())
    int n = nums.size(), i = 0;

    while(nums[i] <  1) {
        i++;
    }

    int missingNumber = 1;

    for(int j = i; j < n; j++) {
        if(missingNumber == nums[j]) {
            missingNumber += 1;
        } else if(missingNumber < nums[j]) {
            return missingNumber;
        }
    }

    return missingNumber;
}
Enter fullscreen mode Exit fullscreen mode

As we are sorting the array the time complexity of this approach is O(n * log(n)). The space complexity is O(1).

Hash Table

We can further improve the time complexity of our approach by using a hash table. We create a hash table for size n. We run a loop over the array and insert all the elements in the hash. We run another loop from 1 to n + 1. If any element i is not present in the hash table we return i.

The C++ snippet of this approach is as follows:

int firstMissingPositive(vector<int>& nums) {
    int n = nums.size();
    map<int, int> m;
    int i = 0;

    while( i < n) {
        m[nums[i]] = i;
    }

    for(int i = 1; i <= n + 1; i++) {
        if(m.find(i) == m.end()) {
            return i;
        }
    }

    return n + 1;
}
Enter fullscreen mode Exit fullscreen mode

We are scanning the array and map linearly the time complexity of this approach is O(n). As we are using an additional space in terms of the hash table, the space complexity is O(n).

Optimized solution

We can solve this problem without using any additional place. We use the array indexes to mark the presence of the numbers in the array. We mark the number X at nums[X - 1]. The number 1 gets placed at nums[0], 2 at nums[1], and so on. We don't mark numbers that are negative or greater than n + 1.

Let's check the algorithm first.

Algorithm

- set i = 0
      n = nums.size()

- loop while i < n
  - if nums[i] > 0 && nums[i] <= n + 1 && nums[nums[i] - 1] != nums[i]
    - swap nums[nums[i] - 1] and nums[i]
  - else
    - increment i: i++
  - if end
- while end

- loop for i = 0; i < n; i++
  - if nums[i] != i + 1
    - return i + 1
  - if end
- for end

- return n + 1
Enter fullscreen mode Exit fullscreen mode

The time complexity of this approach is O(n). The space complexity is O(1).

Let's check our algorithm in C++, Golang, and JavaScript.

C++ solution

class Solution {
public:
    int firstMissingPositive(vector<int>& nums) {
        int i = 0, n = nums.size();

        while(i < n) {
            if(nums[i] > 0 & nums[i] <= n && nums[nums[i] - 1] != nums[i]) {
                swap(nums[nums[i] - 1], nums[i]);
            } else {
                i++;
            }
        }

        for(i = 0; i < n; i++) {
            if(nums[i] != i + 1) {
                return i + 1;
            }
        }

        return n + 1;
    }
};
Enter fullscreen mode Exit fullscreen mode

Golang solution

func firstMissingPositive(nums []int) int {
    i, n := 0, len(nums)
    tmp := 0

    for i < n {
        if nums[i] > 0 && nums[i] <= n && nums[nums[i] - 1] != nums[i] {
            tmp = nums[nums[i] - 1]
            nums[nums[i] - 1] = nums[i]
            nums[i] = tmp
        } else {
            i++
        }
    }

    for i = 0; i < n; i++ {
        if nums[i] != i + 1 {
            return i + 1
        }
    }

    return n + 1
}
Enter fullscreen mode Exit fullscreen mode

JavaScript solution

var firstMissingPositive = function(nums) {
    let i = 0, n = nums.length;
    let tmp;

    while(i < n) {
        if(nums[i] > 0 && nums[i] <= n && nums[nums[i] - 1] != nums[i]) {
            tmp = nums[nums[i] - 1];
            nums[nums[i] - 1] = nums[i];
            nums[i] = tmp;
        } else {
            i++;
        }
    }

    for(i = 0; i < n; i++) {
        if(nums[i] != i + 1) {
            return i + 1;
        }
    }

    return n + 1;
};
Enter fullscreen mode Exit fullscreen mode

Let's dry-run our algorithm to see how the solution works.

Input: nums = [3, 4, -1, 1]

Step 1: i = 0
        n = nums.size()
          = 4

Step 2: loop while i < n
          0 < 4
          true

          if nums[i] > 0 && nums[i] <= n + 1 && nums[nums[i] - 1] != nums[i]
             nums[0] > 0 && nums[0] <= 4 + 1 && nums[nums[0] - 1] != nums[0]
             3 > 0 && 3 <= 5 && nums[3 - 1] != 3
             true && true && nums[2] != 3
             true && -1 != 3
             true

             swap(nums[nums[i] - 1], nums[i])
             swap(nums[2], nums[0])

             nums = [-1, 4, 3, 1]

          while continue

        while i < n
          0 < 4
          true

          if nums[i] > 0 && nums[i] <= n + 1 && nums[nums[i] - 1] != nums[i]
             nums[0] > 0 && nums[0] <= 4 + 1 && nums[nums[0] - 1] != nums[0]
             -1 > 0
             false

          else
            i++
            i = 1

        while i < n
          1 < 4
          true

          if nums[i] > 0 && nums[i] <= n + 1 && nums[nums[i] - 1] != nums[i]
             nums[1] > 0 && nums[1] <= 4 + 1 && nums[nums[1] - 1] != nums[1]
             4 > 0 && 4 <= 5 && nums[4 - 1] != 4
             true && true && nums[3] != 4
             true && 1 != 3
             true

             swap(nums[nums[i] - 1], nums[i])
             swap(nums[3], nums[1])

             nums = [-1, 1, 3, 4]

          while continue

        while i < n
          1 < 4
          true

          if nums[i] > 0 && nums[i] <= n + 1 && nums[nums[i] - 1] != nums[i]
             nums[1] > 0 && nums[1] <= 4 + 1 && nums[nums[1] - 1] != nums[1]
             1 > 0 && 1 <= 5 && nums[1 - 1] != 1
             true && true && nums[0] != 1
             true && -1 != 1
             true

             swap(nums[nums[i] - 1], nums[i])
             swap(nums[0], nums[1])

             nums = [1, -1, 3, 4]

          while continue

        while i < n
          1 < 4
          true

          if nums[i] > 0 && nums[i] <= n + 1 && nums[nums[i] - 1] != nums[i]
             nums[1] > 0 && nums[1] <= 4 + 1 && nums[nums[1] - 1] != nums[1]
             -1 > 0
             false

          else
            i++
            i = 2

        while i < n
          2 < 4
          true

          if nums[i] > 0 && nums[i] <= n + 1 && nums[nums[i] - 1] != nums[i]
             nums[2] > 0 && nums[2] <= 4 + 1 && nums[nums[2] - 1] != nums[2]
             3 > 0 && 3 <= 5 && nums[3 - 1] != nums[2]
             true && true && nums[2] != nums[2]
             false

          else
            i++
            i = 3

        while i < n
          3 < 4
          true

          if nums[i] > 0 && nums[i] <= n + 1 && nums[nums[i] - 1] != nums[i]
             nums[3] > 0 && nums[3] <= 4 + 1 && nums[nums[3] - 1] != nums[3]
             4 > 0 && 4 <= 5 && nums[4 - 1] != nums[3]
             true && true && nums[3] != nums[3]
             false

          else
            i++
            i = 4

        while i < n
          4 < 4
          false

Step 3: loop for i = 0; i < n
          0 < 4
          true

          if nums[i] != i + 1
             nums[0] != 0 + 1
             1 != 1
             false

          i++
          i = 1

        loop for i < n
          1 < 4
          true

          if nums[i] != i + 1
             nums[1] != 1 + 1
             -1 != 2
             true

             return i + 1

We return the answer as 2.
Enter fullscreen mode Exit fullscreen mode

Top comments (0)