DEV Community

Cover image for JavaScript Algorithms and Data Structures
Alexandre Freire
Alexandre Freire

Posted on

JavaScript Algorithms and Data Structures

By https://github.com/trekhleb/javascript-algorithms

JavaScript Algorithms and Data Structures

This repository contains JavaScript based examples of many
popular algorithms and data structures.

Each algorithm and data structure has its own separate README
with related explanations and links for further reading (including ones
to YouTube videos).

☝ Note that this project is meant to be used for learning and researching purposes
only, and it is **not
* meant to be used for production.*

Data Structures

A data structure is a particular way of organizing and storing data in a computer so that it can
be accessed and modified efficiently. More precisely, a data structure is a collection of data
values, the relationships among them, and the functions or operations that can be applied to
the data.

B - Beginner, A - Advanced

Algorithms

An algorithm is an unambiguous specification of how to solve a class of problems. It is
a set of rules that precisely define a sequence of operations.

B - Beginner, A - Advanced

Algorithms by Topic

Algorithms by Paradigm

An algorithmic paradigm is a generic method or approach which underlies the design of a class
of algorithms. It is an abstraction higher than the notion of an algorithm, just as an
algorithm is an abstraction higher than a computer program.

How to use this repository

Install all dependencies

npm install
Enter fullscreen mode Exit fullscreen mode

Run ESLint

You may want to run it to check code quality.

npm run lint
Enter fullscreen mode Exit fullscreen mode

Run all tests

npm test
Enter fullscreen mode Exit fullscreen mode

Run tests by name

npm test -- 'LinkedList'
Enter fullscreen mode Exit fullscreen mode

Troubleshooting

In case if linting or testing is failing try to delete the node_modules folder and re-install npm packages:

rm -rf ./node_modules
npm i
Enter fullscreen mode Exit fullscreen mode

Playground

You may play with data-structures and algorithms in ./src/playground/playground.js file and write
tests for it in ./src/playground/__test__/playground.test.js.

Then just simply run the following command to test if your playground code works as expected:

npm test -- 'playground'
Enter fullscreen mode Exit fullscreen mode

Useful Information

References

▶ Data Structures and Algorithms on YouTube

Big O Notation

Big O notation is used to classify algorithms according to how their running time or space requirements grow as the input size grows.
On the chart below you may find most common orders of growth of algorithms specified in Big O notation.

Big O graphs

Source: Big O Cheat Sheet.

Below is the list of some of the most used Big O notations and their performance comparisons against different sizes of the input data.

Big O Notation Computations for 10 elements Computations for 100 elements Computations for 1000 elements
O(1) 1 1 1
O(log N) 3 6 9
O(N) 10 100 1000
O(N log N) 30 600 9000
O(N^2) 100 10000 1000000
O(2^N) 1024 1.26e+29 1.07e+301
O(N!) 3628800 9.3e+157 4.02e+2567

Data Structure Operations Complexity

Data Structure Access Search Insertion Deletion Comments
Array 1 n n n
Stack n n 1 1
Queue n n 1 1
Linked List n n 1 n
Hash Table - n n n In case of perfect hash function costs would be O(1)
Binary Search Tree n n n n In case of balanced tree costs would be O(log(n))
B-Tree log(n) log(n) log(n) log(n)
Red-Black Tree log(n) log(n) log(n) log(n)
AVL Tree log(n) log(n) log(n) log(n)
Bloom Filter - 1 1 - False positives are possible while searching

Array Sorting Algorithms Complexity

Name Best Average Worst Memory Stable Comments
Bubble sort n n2 n2 1 Yes
Insertion sort n n2 n2 1 Yes
Selection sort n2 n2 n2 1 No
Heap sort n log(n) n log(n) n log(n) 1 No
Merge sort n log(n) n log(n) n log(n) n Yes
Quick sort n log(n) n log(n) n2 log(n) No Quicksort is usually done in-place with O(log(n)) stack space
Shell sort n log(n) depends on gap sequence n (log(n))2 1 No
Counting sort n + r n + r n + r n + r Yes r - biggest number in array
Radix sort n * k n * k n * k n + k Yes k - length of longest key

Project Backers

You may support this project via ❤️️ GitHub or ❤️️ Patreon.

Folks who are backing this project ∑ = 0

ℹ️ A few more projects and articles about JavaScript and algorithms on trekhleb.dev

Top comments (2)

Collapse
 
ankur29mac profile image
Ankur Kumar

None of the links are working.

Collapse
 
alexandrefreire profile image
Alexandre Freire

links adjusted, thanks!