DEV Community

Cover image for Custom metrics for Keras/TensorFlow
Arnaldo Gualberto
Arnaldo Gualberto

Posted on • Originally published at Medium

Custom metrics for Keras/TensorFlow

Recently, I published an article about binary classification metrics that you can check here. The article gives a brief explanation of the most traditional metrics and presents less famous ones like NPV, Specificity, MCC and EER. If you don't know some of these metrics, take a look at the article. It's only 7 minutes to read. I'm sure it will be useful for you.

In this article, I decided to share the implementation of these metrics for Deep Learning frameworks. It includes recall, precision, specificity, negative predictive value (NPV), f1-score, and Matthews' Correlation Coefficient (MCC). You can use it in both Keras or TensorFlow v1/v2.

The Code

Here's the complete code for all metrics:

import numpy as np
import tensorflow as tf
from keras import backend as K


def recall(y_true, y_pred):
    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
    recall_keras = true_positives / (possible_positives + K.epsilon())
    return recall_keras


def precision(y_true, y_pred):
    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
    precision_keras = true_positives / (predicted_positives + K.epsilon())
    return precision_keras


def specificity(y_true, y_pred):
    tn = K.sum(K.round(K.clip((1 - y_true) * (1 - y_pred), 0, 1)))
    fp = K.sum(K.round(K.clip((1 - y_true) * y_pred, 0, 1)))
    return tn / (tn + fp + K.epsilon())


def negative_predictive_value(y_true, y_pred):
    tn = K.sum(K.round(K.clip((1 - y_true) * (1 - y_pred), 0, 1)))
    fn = K.sum(K.round(K.clip(y_true * (1 - y_pred), 0, 1)))
    return tn / (tn + fn + K.epsilon())


def f1(y_true, y_pred):
    p = precision(y_true, y_pred)
    r = recall(y_true, y_pred)
    return 2 * ((p * r) / (p + r + K.epsilon()))


def fbeta(y_true, y_pred, beta=2):
    y_pred = K.clip(y_pred, 0, 1)

    tp = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)), axis=1)
    fp = K.sum(K.round(K.clip(y_pred - y_true, 0, 1)), axis=1)
    fn = K.sum(K.round(K.clip(y_true - y_pred, 0, 1)), axis=1)

    p = tp / (tp + fp + K.epsilon())
    r = tp / (tp + fn + K.epsilon())

    num = (1 + beta ** 2) * (p * r)
    den = (beta ** 2 * p + r + K.epsilon())
    return K.mean(num / den)


def matthews_correlation_coefficient(y_true, y_pred):
    tp = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    tn = K.sum(K.round(K.clip((1 - y_true) * (1 - y_pred), 0, 1)))
    fp = K.sum(K.round(K.clip((1 - y_true) * y_pred, 0, 1)))
    fn = K.sum(K.round(K.clip(y_true * (1 - y_pred), 0, 1)))

    num = tp * tn - fp * fn
    den = (tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)
    return num / K.sqrt(den + K.epsilon())


def equal_error_rate(y_true, y_pred):
    n_imp = tf.count_nonzero(tf.equal(y_true, 0), dtype=tf.float32) + tf.constant(K.epsilon())
    n_gen = tf.count_nonzero(tf.equal(y_true, 1), dtype=tf.float32) + tf.constant(K.epsilon())

    scores_imp = tf.boolean_mask(y_pred, tf.equal(y_true, 0))
    scores_gen = tf.boolean_mask(y_pred, tf.equal(y_true, 1))

    loop_vars = (tf.constant(0.0), tf.constant(1.0), tf.constant(0.0))
    cond = lambda t, fpr, fnr: tf.greater_equal(fpr, fnr)
    body = lambda t, fpr, fnr: (
        t + 0.001,
        tf.divide(tf.count_nonzero(tf.greater_equal(scores_imp, t), dtype=tf.float32), n_imp),
        tf.divide(tf.count_nonzero(tf.less(scores_gen, t), dtype=tf.float32), n_gen)
    )
    t, fpr, fnr = tf.while_loop(cond, body, loop_vars, back_prop=False)
    eer = (fpr + fnr) / 2

    return eer
Enter fullscreen mode Exit fullscreen mode

Almost all the metrics in the code are described in the article previously mentioned. Therefore, you can find a detailed explanation there.

How to use in Keras or TensorFlow

If you use Keras or TensorFlow (especially v2), it’s quite easy to use such metrics. Here’s an example:

model = ... # define you model as usual
model.compile(
    optimizer="adam", # you can use any other optimizer
    loss='binary_crossentropy',
    metrics=[
        "accuracy",
        precision,
        recall,
        f1,
        fbeta,
        specificity,
        negative_predictive_value,
        matthews_correlation_coefficient,
        equal_error_rate
    ]
)
model.fit(...) # train your model
Enter fullscreen mode Exit fullscreen mode

As you can see, you can compute all the custom metrics at once. Please, remember that:

  • as they are binary classification metrics, you can only use them in binary classification problems. Maybe you’ll have some results for multiclass or regression problems, but they will be incorrect.
  • they are supposed to be used as metrics only. It means you can’t use them as losses. In fact, your loss must always be “binary_crossentropy”, since it's a binary classification problem.

Final Words

You can also check my work in:

Top comments (0)