- Below are few examples which is started with simple to advance level (Travelling Salesman Problem and 0/1 knapsack problem)
- These examples are based on brute force Algorithm
My Note:-
- There are several downsides of this Brute Force Algorithm but before directly jumping into Dynamic programming and other approaches
- you should have ideas on this approach and you must find out why we need a Dynamic Programming pattern (Recursion + Memorization)
If you closely observe the pattern for the brute force
const wrapper = (value) => {
const helper = (combinedArray, depth) => {
if (depth == 3) {
// operation
return ;
}
for (let coin of coins) {
if (value - coin >=0) {
combinedArray.push(coin);
helper(combinedArray, label+1);
combinedArray.pop();
}
}
}
helper([], 0);
return result;
};
const res = wrapper(value);
console.log(res);
Q1. Start with 2 coin combinations
const wrapper = () => {
const coinSide = ['head', 'tail']
const result = [];
const helper = (currentCombination, depth) => {
if (depth == 2) {
result.push([...currentCombination]);
return ;
}
for (side of coinSide) {
currentCombination.push(side);
helper(currentCombination, depth +1);
currentCombination.pop()
}
}
helper([], 0);
return result;
};
const res = wrapper();
console.log(res);
Q2. Start with 3 coin combinations
const wrapper = () => {
const coinSide = ['head', 'tail']
const result = [];
const helper = (currentCombination, depth) => {
if (depth == 3) {
result.push([...currentCombination]);
return ;
}
for (side of coinSide) {
currentCombination.push(side);
helper(currentCombination, depth +1);
currentCombination.pop()
}
}
helper([], 0);
return result;
};
const res = wrapper();
console.log(res);
/*
[
[ 'head', 'head', 'head' ],
[ 'head', 'head', 'tail' ],
[ 'head', 'tail', 'head' ],
[ 'head', 'tail', 'tail' ],
[ 'tail', 'head', 'head' ],
[ 'tail', 'head', 'tail' ],
[ 'tail', 'tail', 'head' ],
[ 'tail', 'tail', 'tail' ]
]
*/
Q3. Seating arrangement
const wrapper = () => {
const result = [];
const group = ['b1', 'b2', 'g1']
const helper = (combination, depth) => {
if (depth == 3) {
result.push([...combination]);
return;
}
for (let item of group) {
if (combination.indexOf(item) < 0) {
combination.push(item);
helper(combination, depth +1);
combination.pop();
}
}
}
helper([], 0);
return result;
};
/*
[
[ 'b1', 'b2', 'g1' ],
[ 'b1', 'g1', 'b2' ],
[ 'b2', 'b1', 'g1' ],
[ 'b2', 'g1', 'b1' ],
[ 'g1', 'b1', 'b2' ],
[ 'g1', 'b2', 'b1' ]
]
*/
Q4. Coin / Sum problem
// Minimum coin Problem
const wrapper = (value) => {
let result = 99999;
let resultArr = [];
const coins = [10, 6, 1];
const helper = (value, label, combinedArray) => {
if (value == 0) {
if (result > label) {
result = label;
resultArr = [...combinedArray]
}
return ;
}
for (let coin of coins) {
if (value - coin >=0) {
combinedArray.push(coin);
helper(value-coin, label+1, combinedArray);
combinedArray.pop();
}
}
}
helper(value, 0, []);
console.log(resultArr)
return result;
};
const res = wrapper(12);
console.log(res);
/*
[ 6, 6 ]
2
*/
Q5.Set generation
// Problem 1: Generating All Subsets of a Set
// Problem Statement:
// Given a set of unique elements, generate all possible subsets (the power set).
// This solution need more enhancement.
// Example:
// Input: [1, 2, 3]
// Output: [[], [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]]
const wrapper = () => {
const result = [[]];
const input = [1,2,3];
input.forEach(item => result.push([item]));
const helper = (combination, depth) => {
if (depth == 2) {
if (result.indexOf(combination) < 0) {
result.push([...combination]);
}
return;
}
for (let item of input) {
if (combination.indexOf(item) < 0) {
combination.push(item);
helper(combination, depth+1);
combination.pop()
}
}
}
helper([], 0);
result.push([...input])
return result;
}
const test = wrapper();
console.log(test);
/*
[
[], [ 1 ],
[ 2 ], [ 3 ],
[ 1, 2 ], [ 1, 3 ],
[ 2, 1 ], [ 2, 3 ],
[ 3, 1 ], [ 3, 2 ],
[ 1, 2, 3 ]
]
*/
Q6.Travelling sales man problem using brut force algorithm
// Travelling sales man problem using brut force algorithm
function calculateDistance(matrix, path) {
let totalDistance = 0;
for (let i = 0; i < path.length - 1; i++) {
totalDistance += matrix[path[i]][path[i + 1]];
}
// Return to the starting city
totalDistance += matrix[path[path.length - 1]][path[0]];
return totalDistance;
}
function permute(arr) {
const result = [];
const helper = (combination, depth) => {
if (depth == 4) {
result.push([...combination]);
return;
}
for (let item of arr) {
if (combination.indexOf(item) < 0) {
combination.push(item);
helper(combination, depth +1);
combination.pop()
}
}
}
helper([], 0);
return result;
}
function tsp(matrix) {
const cities = Array.from({length: matrix.length}, (_, index) => index)
console.log(cities)
const permutations = permute(cities);
console.log(permutations)
let minDistance = Infinity;
let bestPath = [];
for (let path of permutations) {
const distance = calculateDistance(matrix, path);
if (distance < minDistance) {
minDistance = distance;
bestPath = path;
}
}
return { minDistance, bestPath };
}
// Example usage:
const distanceMatrix = [
[0, 10, 15, 20],
[10, 0, 35, 25],
[15, 35, 0, 30],
[20, 25, 30, 0]
];
const result = tsp(distanceMatrix);
console.log(`The shortest distance is: ${result.minDistance}`);
console.log(`The best path is: ${result.bestPath}`);
/*
Initialization: Calculate Distance Explanation
totalDistance is initialized to 0.
First Iteration (i = 0):
From city 0 to city 1: matrix[0][1] is 10.
Add 10 to totalDistance, making it 10.
Second Iteration (i = 1):
From city 1 to city 3: matrix[1][3] is 25.
Add 25 to totalDistance, making it 35.
Third Iteration (i = 2):
From city 3 to city 2: matrix[3][2] is 30.
Add 30 to totalDistance, making it 65.
Return to Starting City:
From city 2 back to city 0: matrix[2][0] is 15.
Add 15 to totalDistance, making it 80.
Return Total Distance:
The function returns 80, which is the total distance of the path [0, 1, 3, 2, 0].
// Output
[ 0, 1, 2, 3 ]
[
[ 0, 1, 2, 3 ], [ 0, 1, 3, 2 ],
[ 0, 2, 1, 3 ], [ 0, 2, 3, 1 ],
[ 0, 3, 1, 2 ], [ 0, 3, 2, 1 ],
[ 1, 0, 2, 3 ], [ 1, 0, 3, 2 ],
[ 1, 2, 0, 3 ], [ 1, 2, 3, 0 ],
[ 1, 3, 0, 2 ], [ 1, 3, 2, 0 ],
[ 2, 0, 1, 3 ], [ 2, 0, 3, 1 ],
[ 2, 1, 0, 3 ], [ 2, 1, 3, 0 ],
[ 2, 3, 0, 1 ], [ 2, 3, 1, 0 ],
[ 3, 0, 1, 2 ], [ 3, 0, 2, 1 ],
[ 3, 1, 0, 2 ], [ 3, 1, 2, 0 ],
[ 3, 2, 0, 1 ], [ 3, 2, 1, 0 ]
]
The shortest distance is: 80
The best path is: 0,1,3,2
*/
Q7. 0/1 knapsack Brut force Problem
The 0/1 Knapsack problem is a classic problem where you are given a set of items, each with a weight and a value, and you need to determine the most valuable combination of items to include in a knapsack, given a maximum weight capacity.
The "0/1" part of the name refers to the fact that you can't break items into smaller parts; you either take the whole item or don't take it at all (i.e., 0 or 1).
The brute force solution to the 0/1 Knapsack problem involves generating all possible combinations of items and checking which combination gives the maximum value without exceeding the weight capacity of the knapsack.
This approach has a time complexity of O(2^n), where n is the number of items, as there are 2^n possible combinations of items.
// 0/1 knapsack Brut force Problem
function knapsackBruteForce(weights, values, capacity) {
let n = weights.length;
let maxValue = 0;
const subsetResult = [];
const binaryVals = [0, 1];
// Function to calculate the total weight and value of a subset
function calculateSubset(subset) {
let totalWeight = 0;
let totalValue = 0;
for (let i = 0; i < subset.length; i++) {
if (subset[i]) {
totalWeight += weights[i];
totalValue += values[i];
}
}
return { totalWeight, totalValue };
}
const helper = (combination, depth) => {
if (depth == 4) {
subsetResult.push([...combination]);
return ;
}
for (let item of binaryVals) {
combination.push(item);
helper(combination, depth +1);
combination.pop()
}
}
helper([], 0);
console.log(subsetResult)
// Generate all subsets using binary representation
for (let subset of subsetResult) {
let { totalWeight, totalValue } = calculateSubset(subset);
if (totalWeight <= capacity && totalValue > maxValue) {
maxValue = totalValue;
}
}
return maxValue;
}
// Example usage:
const weights = [2, 3, 4, 5];
const values = [3, 4, 5, 6];
const capacity = 5;
const maxVal = knapsackBruteForce(weights, values, capacity);
console.log(`The maximum value in the knapsack is: ${maxVal}`);
/*
[
[ 0, 0, 0, 0 ], [ 0, 0, 0, 1 ],
[ 0, 0, 1, 0 ], [ 0, 0, 1, 1 ],
[ 0, 1, 0, 0 ], [ 0, 1, 0, 1 ],
[ 0, 1, 1, 0 ], [ 0, 1, 1, 1 ],
[ 1, 0, 0, 0 ], [ 1, 0, 0, 1 ],
[ 1, 0, 1, 0 ], [ 1, 0, 1, 1 ],
[ 1, 1, 0, 0 ], [ 1, 1, 0, 1 ],
[ 1, 1, 1, 0 ], [ 1, 1, 1, 1 ]
]
The maximum value in the knapsack is: 7
*/
Top comments (0)