DEV Community

Gorchene Bader
Gorchene Bader

Posted on

Deploy Yolov8 model locally using FastAPI x ReactJS 🐍⚡

Hello, data science enthusiasts! In this tutorial, we'll walk through the process of deploying a YOLOv8 object detection model using FastAPI for the backend microservice and ReactJS for the frontend interface.

First, make sure you have Python installed on your system. Then, let's create our project directory:

mkdir Yolov8_Fast_React
cd Yolov8_Fast_React
Enter fullscreen mode Exit fullscreen mode

Next, we'll set up a Python virtual environment to keep our dependencies isolated:

python -m venv env
source env/bin/activate
Enter fullscreen mode Exit fullscreen mode

With the virtual environment activated, we can now proceed to install the necessary dependencies. We'll use FastAPI for the backend and React for the frontend:

pip install fastapi uvicorn ultralytics opencv-python-headless numpy
Enter fullscreen mode Exit fullscreen mode

Now that we have the required tools, let's start building the backend API using FastAPI:

touch main.py
Enter fullscreen mode Exit fullscreen mode

In the main.py file, we'll define the API endpoints and handle the object detection logic:

from fastapi import FastAPI, File, UploadFile
import cv2
import numpy as np
from ultralytics import YOLO
from fastapi.middleware.cors import CORSMiddleware

app = FastAPI()
model = YOLO("yolov8n.pt")

allowed_origins = [
    "http://localhost",
    "http://localhost:3000",
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=allowed_origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.post("/detect/")
async def detect_objects(file: UploadFile):
    # Process the uploaded image for object detection
    image_bytes = await file.read()
    image = np.frombuffer(image_bytes, dtype=np.uint8)
    image = cv2.imdecode(image, cv2.IMREAD_COLOR)

    # Perform object detection with YOLOv8
    results = model.predict(image)

    # Process the detection results and return a response
    detections = []
    for result in results[0].boxes:
        x1, y1, x2, y2 = result.xyxy[0]
        confidence = result.conf[0]
        class_id = result.cls[0]
        detections.append({
            "x1": float(x1),
            "y1": float(y1),
            "x2": float(x2),
            "y2": float(y2),
            "confidence": float(confidence),
            "class_id": int(class_id)
        })
        print(detections)

    return {"detections": detections}
Enter fullscreen mode Exit fullscreen mode

Next, let's create the frontend using React:

npx create-react-app frontend
cd frontend
npm start
Enter fullscreen mode Exit fullscreen mode

In the React app, we'll create a simple interface to upload an image and display the detected objects:

import React, { useState } from 'react';
import axios from 'axios';

function App() {
  const [image, setImage] = useState(null);
  const [detections, setDetections] = useState([]);

  const handleImageUpload = async (event) => {
    const file = event.target.files[0];
    setImage(file);

    const formData = new FormData();
    formData.append('file', file);

    const response = await axios.post('/detect', formData);
    setDetections(response.data.objects);
  };

  return (
    <div>
      <input type="file" onChange={handleImageUpload} />
      {image && (
        <div>
          <img src={URL.createObjectURL(image)} alt="Uploaded" />
          {detections.map((detection, index) => (
            <div key={index}>
              Object at {detection[0]}, {detection[1]}, {detection[2]}, {detection[3]}
            </div>
          ))}
        </div>
      )}
    </div>
  );
}

export default App;
Enter fullscreen mode Exit fullscreen mode

Finally, to run the full application, start the FastAPI backend and the React frontend in separate terminals:

# Backend
uvicorn main:app --reload

# Frontend
cd frontend
npm start
Enter fullscreen mode Exit fullscreen mode

The application should now be accessible at http://localhost:3000, allowing you to upload images and view the detected objects using the YOLOv8 model.

Top comments (0)