Imagine that you have to consume an API to retrieve data from people of your company. Now imagine that all these data don’t follow any pattern and the API can return not only people, but robots, “phantom” accounts and all the source of irrelevant information. There are no rules: no flag to identify if the data belongs to a person or to some other creature and from time to time you can discover another variation that would classify the data as invalid.
Well, that happened. The validation could be achieved with “regex”, but it would be hard coded and the customer would always depend on the change in the code and new deploys.
Aha!
The most efficient and clean way found to do that it in Java was to create a table to save the rules that would configure a record as invalid, read and convert them to Predicates and dynamically validate each part of the API’s return to classify an object as valid or invalid.
Show me the code
This behaviour was reproduced on the project available on my GitHub, using Java 11 and Spring Boot.
Object representation
The external API’s data is represented by the class PersonDTO
.
The rules that define a PersonDTO
as invalid are represented and persisted through entity ExclusionRule where:
-
fieldName
is the attribute onPersonDTO
that will be checked. -
operator
is an operator AND or OR. -
comparator
is a comparator EQUALS or CONTAINS. -
ruleValues
are the values separated by comma that would make thefieldName
invalid.
Interpret rules
The resource data.sql
will initialize some rules for the purpose of this test:
INSERT INTO exclusion_rule(field_name, comparator, operator, rule_values) VALUES('name', 'CONTAINS', 'OR', '1,2,3,4,5,6,7,8,9,0');
INSERT INTO exclusion_rule(field_name, comparator, operator, rule_values) VALUES('email', 'CONTAINS', 'OR','@exclude.me,1');
INSERT INTO exclusion_rule(field_name, comparator, operator, rule_values) VALUES('internalCode', 'CONTAINS', 'AND','a,b');
INSERT INTO exclusion_rule(field_name, comparator, operator, rule_values) VALUES('location', 'EQUALS', 'OR','jupiter,mars');
The rules above can be interpreted as:
- If the attribute
name
onPersonDTO
object contains 1, 2, 3, 4, 5, 6, 7, 8, 9 or 0, the object is invalid. - If the attribute
email
onPersonDTO
object contains “@exclude.me” or “1”, the object is invalid. - If the attribute
internalCode
onPersonDTO
object contains “a” and “b”, the object is invalid. - If the attribute
location
onPersonDTO
object is equals to “jupiter” or “mars”, the object is invalid.
Using Predicates
For each possible combination of operators and comparators a validation class was created (RuleContainsAnd
, RuleContainsOr
and RuleEqualsOr
). By implementing the interface Predicate<T>
those classes can be used to validate an object through the simple and elegant call of test(myFieldValue)
. It is only necessary to overwrite test
method and define a custom rule.
public class RuleEqualsOr implements Predicate<String> {
private List<String> exclusionRulesLst;
public RuleEqualsOr(final List<String> exclusionRulesLst) {
this.exclusionRulesLst = exclusionRulesLst;
}
@Override
public boolean test(final String fieldValue) {
return this.exclusionRulesLst.stream().anyMatch(fieldValue::equals);
}
}
Class ExclusionRuleService
is the responsible to retrieve saved rules, transform them to its corresponding Predicate
and keep them in a list.
/**
* Retrieve all rules from the database and process it.
*
* @return
*/
private Map<String, Predicate<String>> decodeAllRules() {
// @formatter:off
return this.validationRuleRepository.findAll()
.stream()
.map(this::deconeOneRule)
.collect(Collectors.toMap(PairDTO::getRule, PairDTO::getPredicate));
// @formatter:on
}
/**
* According to the rule configuration, create a Predicate.
*
* @param validationRule
* @return
*/
private PairDTO deconeOneRule(final ExclusionRule validationRule) {
PairDTO pairDTO = null;
List<String> values = new ArrayList<>();
if (validationRule.getRuleValues().contains(",")) {
values = Arrays.asList(validationRule.getRuleValues().split(","));
} else {
values.add(validationRule.getRuleValues());
}
if (validationRule.getComparator() == ComparatorEnum.EQUALS && validationRule.getOperator() == OperatorEnum.OR) {
pairDTO = new PairDTO(validationRule.getFieldName(), new RuleEqualsOr(values));
} else {
if (validationRule.getOperator() == OperatorEnum.OR) {
pairDTO = new PairDTO(validationRule.getFieldName(), new RuleContainsOr(values));
} else {
pairDTO = new PairDTO(validationRule.getFieldName(), new RuleContainsAnd(values));
}
}
return pairDTO;
}
Where the magic lives
Now that all the validation “bed” is done, it is possible to use methods filterAllValid
and isInvalid
to receive an object or a list and pass them to isInvalidTestPredicate
. On this last method we get the field of the class PersonDTO
that matches the defined on ExclusionRule
and its value using Reflections.
It is important to be aware that the heavy use of Reflections can cause performance issues, but on this particular situation I’ve considered that some performance could be sacrificed to achieve the flexibility of the validation.
The magic happens when the method test
is called. No additional test is required.
/**
* Retrieve the person's object fields by reflection and test its validity.
*
* @param person
* @param entry
* @return
*/
private Boolean isInvalidTestPredicate(final PersonDTO person, final Entry<String, Predicate<String>> entry) {
final Field field = this.reflectionService.getFieldByName(person, entry.getKey());
final String fieldValue = String.valueOf(this.reflectionService.getFieldValue(person, field));
return entry.getValue().test(fieldValue);
}
/**
* Verify if a person is invalid if it fails on any determined rule.
*
* @param person
* @return
*/
public Boolean isInvalid(final PersonDTO person) {
return exclusionRulesLst.entrySet().stream().anyMatch(e -> this.isInvalidTestPredicate(person, e));
}
/**
* Get only valid objects from a list
*
* @param personDTOLst
* @return
*/
public List<PersonDTO> filterAllValid(final List<PersonDTO> personDTOLst) {
// @formatter:off
return personDTOLst.stream()
.filter(person -> !this.isInvalid(person))
.collect(Collectors.toList());
// @formatter:on
}
Test me
On class ExclusionRulesServiceTests
we can check if the rules are being properly applied to the fields of a PersonDTO object.
@Test
public void filterAllValidPersonLstNameContainsOr_ok() {
final PersonDTO person = new PersonDTO();
person.setName("Daniane P. Gomes");
person.setEmail("danianepg@gmail.com");
person.setInternalCode("DPG001");
person.setCompany("ACME");
person.setLocation("BR");
final PersonDTO person2 = new PersonDTO();
person2.setName("Dobberius Louis The Free Elf");
person2.setEmail("dobby@free.com");
person2.setInternalCode("DLTFE");
person2.setCompany("Self Employed");
person2.setLocation("HG");
final List<PersonDTO> personLst = new ArrayList<>();
personLst.add(person);
personLst.add(person2);
final List<PersonDTO> personValidLst = this.exclusionRuleService.filterAllValid(personLst);
assertEquals(personValidLst.size(), 2);
}
Conclusion
While consuming an external API we can receive data that is not properly structured. To check its relevance in a clean way we can:
- Create a repository of rules and represent them as
Predicate<T>
- Convert the API response data to a
PersonDTO
object - Check if each attribute of
PersonDTO
is valid only by calling the methodtest
Originally posted on my Medium page.
Top comments (0)