DEV Community

Cover image for How to install Python packages without a requirements.txt file with pipreqs
Dmitriy Zub ☀️
Dmitriy Zub ☀️

Posted on

How to install Python packages without a requirements.txt file with pipreqs

Why bother

Say you get a project that doesn't have a requirements.txt file in it and that project has 20+ imports, meaning you need to install 20+ modules manually. Sound not that interesting.

That's when pipreqs comes into play as a "life saver". This tool will scan all scripts/folders in the current working directory (or where you want it to look by providing a path) and installs all the found packages.

Example usage

gif

Solution

  • create virtual env
  • activate it
  • install pipreqs
  • tell pipreqs to look for files in the current folder "./" and use --encoding utf-8
    • wait until requirements.txt is created
  • install script dependencies from created requirements.txt

Which results in this command:

# windows
python -m venv env && \
source env/Scripts/activate && \
pip install pipreqs && \
pipreqs --encoding utf-8 "./" && \
pip install -r requirements.txt && \
pip freeze > requirements.txt
Enter fullscreen mode Exit fullscreen mode
# linux
python -m venv env && \
source env/source/activate && \
pip install pipreqs && \
pipreqs --encoding utf-8 "./" && \
pip install -r requirements.txt && \
pip freeze > requirements.txt
Enter fullscreen mode Exit fullscreen mode

Low amount of imports example

Let's say you have a script like this:

import requests

response = requests.get('https://serpapi.com/playground')
print(response.html)
Enter fullscreen mode Exit fullscreen mode

Big amount of imports example

The point of it is to show how all the modules install automatically without having an initial requirements.txt file.

Here will have a bigger amount of imports:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import scipy.stats as stats
import statsmodels.api as sm
import sklearn
import yellowbrick
import wordcloud
import nltk
import spacy
import transformers
import streamlit as st

# Load and clean data
data = pd.read_csv('data.csv')
data.dropna(inplace=True)

# Descriptive statistics
print('Data Summary')
print(data.describe())

# Data visualization
sns.histplot(data['age'], kde=False, bins=10)
plt.title('Age Distribution')
plt.show()

px.scatter(data, x='income', y='age', color='gender', title='Income vs. Age')

# Correlation analysis
corr_matrix = data.corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()

# Statistical analysis
stat, p = stats.ttest_ind(data[data['gender']=='M']['income'], data[data['gender']=='F']['income'])
print(f'T-test: statistic={stat}, pvalue={p}')

# Machine learning
X = data[['age', 'income']]
y = data['gender']
model = sklearn.linear_model.LogisticRegression()
model.fit(X, y)
visualizer = yellowbrick.classifier.classification_report(model, X, y)
visualizer.show()

# Text analysis
text = 'This is a sample text for text analysis'
tokens = nltk.word_tokenize(text)
print(f'Tokenized text: {tokens}')

nlp = spacy.load('en_core_web_sm')
doc = nlp(text)
for token in doc:
    print(token.text, token.pos_)

model = transformers.pipeline('sentiment-analysis')
result = model(text)[0]
print(f'Sentiment analysis: {result["label"]}, score={result["score"]}')

# Streamlit app
st.title('Data Analysis App')
st.write('Data Summary')
st.write(data.describe())
Enter fullscreen mode Exit fullscreen mode

Generated requirements.txt afterward:

altair==4.2.2
attrs==23.1.0
blinker==1.6.2
blis==0.7.9
cachetools==5.3.0
catalogue==2.0.8
certifi==2022.12.7
charset-normalizer==3.1.0
click==8.1.3
colorama==0.4.6
confection==0.0.4
contourpy==1.0.7
cssselect==1.2.0
cycler==0.11.0
cymem==2.0.7
decorator==5.1.1
docopt==0.6.2
entrypoints==0.4
filelock==3.12.0
fonttools==4.39.3
fsspec==2023.4.0
gitdb==4.0.10
GitPython==3.1.31
huggingface-hub==0.14.1
idna==3.4
importlib-metadata==6.6.0
Jinja2==3.1.2
jmespath==1.0.1
joblib==1.2.0
jsonschema==4.17.3
kiwisolver==1.4.4
langcodes==3.3.0
lxml==4.9.2
markdown-it-py==2.2.0
MarkupSafe==2.1.2
matplotlib==3.7.1
mdurl==0.1.2
murmurhash==1.0.9
nltk==3.8.1
numpy==1.24.3
packaging==23.1
pandas==2.0.1
parsel==1.8.1
pathy==0.10.1
patsy==0.5.3
Pillow==9.5.0
pipreqs==0.4.13
plotly==5.14.1
preshed==3.0.8
protobuf==3.20.3
pyarrow==12.0.0
pydantic==1.10.7
pydeck==0.8.1b0
Pygments==2.15.1
Pympler==1.0.1
pyparsing==3.0.9
pyrsistent==0.19.3
python-dateutil==2.8.2
pytz==2023.3
pytz-deprecation-shim==0.1.0.post0
PyYAML==6.0
regex==2023.5.4
requests==2.29.0
rich==13.3.5
scikit-learn==1.2.2
scipy==1.10.1
seaborn==0.12.2
six==1.16.0
smart-open==6.3.0
smmap==5.0.0
spacy==3.5.2
spacy-legacy==3.0.12
spacy-loggers==1.0.4
srsly==2.4.6
statsmodels==0.13.5
streamlit==1.22.0
tenacity==8.2.2
thinc==8.1.10
threadpoolctl==3.1.0
tokenizers==0.13.3
toml==0.10.2
toolz==0.12.0
tornado==6.3.1
tqdm==4.65.0
transformers==4.28.1
typer==0.7.0
typing_extensions==4.5.0
tzdata==2023.3
tzlocal==4.3
urllib3==1.26.15
validators==0.20.0
w3lib==2.1.1
wasabi==1.1.1
watchdog==3.0.0
wordcloud==1.9.1.1
yarg==0.1.9
yellowbrick==1.5
zipp==3.15.0
Enter fullscreen mode Exit fullscreen mode

Current limitations

The only drawback for now, is that it doesn't recognize all packages as there're ~10+ related issues when pipreqs didn't recognize a package.

Top comments (0)