DEV Community

Elemar Júnior
Elemar Júnior

Posted on

How to parse, simplify, differentiate and evaluate/solve (using Newton's method) equations and expressions in F#.

This was orginally posted in my blog

The Object Model

The first step to parse expressions and equations is to create a "good-enough" object model.

type Expr =
  | X
  | Const of value: double
  | Add   of Expr * Expr
  | Sub   of Expr * Expr
  | Mult  of Expr * Expr
  | Div   of Expr * Expr
  | Pow   of Expr * Expr
  | Neg   of Expr

// 2 + 2 / 2
let sample = Add(Const(2.), Div(Const(2.), Const(2.))
Enter fullscreen mode Exit fullscreen mode

It is fantastic how easy it is when using F#.

Parsing

In this implementation, I use F# Active Patterns to do the parsing.

open System

let (|Digit|_|) = function
    | x::xs when Char.IsDigit(x) ->
        Some(Char.GetNumericValue(x), xs)
    | _ -> None

let (|IntegerPart|_|) input =
    match input with
    | Digit(h, t) ->
        let rec loop acc = function
            | Digit(x, xs) -> loop ((acc * 10.) + x) xs
            | xs -> Some(acc, xs)
        loop 0. input
    | _ -> None

"10" |> List.ofSeq |> (|IntegerPart|_|)

let (|FractionalPart|_|) = function
    | '.'::t->
        let rec loop acc d = function
            | Digit(x, xs) -> loop ((acc * 10.) + x) (d * 10.) xs
            | xs -> (acc/d, xs)
        Some(loop 0. 1. t)
    | _ -> None

"10" |> List.ofSeq |> (|FractionalPart|_|)
".34" |> List.ofSeq |> (|FractionalPart|_|)

let (|Number|_|) = function
    | IntegerPart(i, FractionalPart(f, t)) -> Some(i+f, t)
    | IntegerPart(i, t) -> Some(i, t)
    | FractionalPart(f, t) -> Some(f, t)
    | _ -> None

"10" |> List.ofSeq |> (|Number|_|)
".35" |> List.ofSeq |> (|Number|_|)
"10.35" |> List.ofSeq |> (|Number|_|)

let parse (expression) =
    let rec (|Expre|_|) = function
        | Multi(e, t) ->
            let rec loop l = function
                | '+'::Multi(r, t) -> loop (Add(l, r)) t
                | '-'::Multi(r, t) -> loop (Sub(l, r)) t
                | [] -> Some(l, [])
                | _ -> None
            loop e t
        | _ -> None
    and (|Multi|_|) = function
        | Atom(l, '*'::Powi(r, t)) -> Some(Mult(l, r), t)
        | Atom(l, '/'::Powi(r, t)) -> Some(Div(l, r), t)
        | Powi(e, t) -> Some(e, t)
        | _ -> None
    and (|Powi|_|) = function
        | '+'::Atom(e, t) -> Some(e, t)
        | '-'::Atom(e, t) -> Some(Neg(e), t)
        | Atom(l, '^'::Powi(r, t)) -> Some(Pow(l, r), t)
        | Atom(e, t) -> Some(e, t)
        | _ -> None
    and (|Atom|_|) = function
        | 'x'::t -> Some(X, t)
        | Number(e, t) -> Some(Const(e), t)
        | '('::Expre(e, ')'::t) -> Some(e, t)
        | _ -> None

    let parsed = (expression |> List.ofSeq |> (|Expre|_|))

    match parsed with 
        | Some(result, _) -> result
        | None -> failwith "failed to parse expression"


parse "2+2"  // Add(Const(2.), Const(2.))
exec 0. (parse "2+2") // 4
exec 2. (parse "x^3") 
parse "x^2-3" // Sub(Pow(X, Const(2.)), Const(3.) 
Enter fullscreen mode Exit fullscreen mode

Simplifying and Evaluating

The following code can simplify equations/expressions removing steps to solve it.

let rec simplify e =
  let result =
      match e with
      // add
      | Add(Const(0.), r) -> simplify r
      | Add(l, Const(0.)) -> simplify l
      | Add(Const(l), Const(r)) -> Const (l + r)
      | Add(l, r) -> (Add(simplify l, simplify r))
      // sub
      | Sub(Const(0.), r) -> Neg (simplify r)
      | Sub(l, Const(0.)) -> l
      | Sub(Const(l), Const(r)) -> Const (l - r)
      | Sub(X, r) -> Sub (X, simplify r)
      | Sub(l, X) -> Sub (simplify l, X)
      | Sub(l, r) -> (Sub(simplify l, simplify r))
      // mult
      | Mult(Const(0.), _) -> Const(0.)
      | Mult(_, Const(0.)) -> Const(0.)
      | Mult(Const(1.), r) -> r
      | Mult(l, Const(1.)) -> l
      | Mult(Const(l), Const(r)) -> Const (l * r)
      | Mult(l, r) when l = r -> (Pow (simplify l, Const(2.)))
      | Mult(Pow(b, p), r) when b = r -> Pow (simplify b, (simplify (Add((simplify p), Const(1.)))))
      | Mult(X, r) -> Mult (X, simplify r)
      | Mult(l, X) -> Mult (simplify l, X)
      | Mult(l, r) -> (Mult(simplify l, simplify r))
      // div
      | Div(Const(0.), _) -> Const(0.)
      | Div(l, Const(1.)) -> l
      | Div(Const(l), Const(r)) -> Const (l / r)
      | Div(X, r) -> Div (X, simplify r)
      | Div(l, X) -> Div (simplify l, X)
      | Div(l, r) -> simplify (Div(simplify l, simplify r))
      // pow
      | Pow(_, Const(0.)) -> Const(1.)
      | Pow(b, Const(1.)) -> simplify b
      | Pow(Const(l), Const(r)) -> Const(System.Math.Pow(l, r))
      | Pow(X, r) -> Pow (X, simplify r)
      | Pow(l, X) -> Pow (simplify l, X)
      | Pow(b, p) -> (Pow(simplify b, simplify p))
      // neg
      | Neg(Const(k)) -> Const (-k)
      | Neg(X) -> Neg(X)
      | Neg(x) -> (Neg(simplify x))
      //
      | other -> other

  if (result = e)
      then result
      else simplify result

simplify (Mult(Mult(X, X), X))
simplify (Pow(Const(2.), Const(3.)))
simplify (Mult(Const(2.), X))
simplify (Add(Const(2.), Div(Const(2.), Const(2.) )))

I love local functions! The simplification process works as an evaluator for expressions. With equations, the process will stop when there are no more possible simplification steps to take.

let exec x expr = 
    let rec replaceX = function 
        | Add(l, r)  -> Add(replaceX l, replaceX r)
        | Sub(l, r)  -> Sub(replaceX l, replaceX r)
        | Mult(l, r) -> Mult(replaceX l, replaceX r)
        | Div(l, r)  -> Div(replaceX l, replaceX r)
        | Pow(l, r)  -> Pow(replaceX l, replaceX r)
        | Neg(e)     -> Neg(replaceX e)
        | Const(v)   -> Const(v)
        | X          -> Const(x)

    match simplify (replaceX expr) with 
    | Const(result) -> result
    | _ -> failwith "impossible to execute"

// resulta 8
Pow(Const(2.), X) |> exec 3.
Enter fullscreen mode Exit fullscreen mode

Differentiating

Newton's method will need derivatives to work. So, let's produce it.

let rec deriv = function 
    | X          -> Const(1.)
    | Const(_)   -> Const(0.)
    | Add(l, r)  -> Add(deriv l, deriv r)
    | Sub(l, r)  -> Sub(deriv l, deriv r)
    | Mult(l, r) -> Add(Mult(deriv l, r), Mult(l, deriv r))
    | Neg(v)     -> Neg(deriv v)
    | Pow(b, e)  -> Mult(e, simplify (Pow(b, Sub(e, Const(1.)))))
    | _          -> failwith "expression not supported."

deriv (Pow(X, Const(3.)))
Enter fullscreen mode Exit fullscreen mode

Welcome, Mr. Newton

We now already have all the elements we need to solve equations using Newton's method.

Newton's method

Here is my implementation.

let newton expr guess error maxdepth =
    let o = parse expr
    let d = deriv o
    let eq = Sub(X, Div(o, d))

    let rec iter g depth =
        if depth > maxdepth
        then failwith "maxdepth exceeded."
        else 
            let newg = exec g eq
            printfn "%A" g

            if (abs (newg - g) < error)  
            then newg 
            else iter newg (depth + 1)

    iter guess 0

newton "x^3-27" 5. 0.000001 100 // 3
Enter fullscreen mode Exit fullscreen mode

The parameters are the equation we need to solve, a solution guess, an acceptable error, and iterations.

We can make it simpler to use:

let solve expr = 
    newton expr 100. 0.00001 100

solve "x^2-9"        // 3
solve "3*x^2-4*x+1"  // 1
Enter fullscreen mode Exit fullscreen mode

That's it

This post was written just for fun. I did it trying to learn F#. Do you like? Could I do something different? Please, give me your feedback.

Top comments (0)