DEV Community

Michał Kalbarczyk
Michał Kalbarczyk

Posted on • Originally published at puddleofcode.com

How to generate git commit message using AI?

Why don't use available solution? All of them using ChatGPT. But I'm out of credits ;)
Of course I want to learn something!

How to generate git commit message?

Git allows you to create hooks. Let's use global one. Global hooks works without modifying every git repo.

Create a directory for hooks:

$ mkdir ~/.config/git/hooks/
Enter fullscreen mode Exit fullscreen mode

Let git knows where hooks are:

$ git config core.hooksPath ~/.config/git/hooks/
Enter fullscreen mode Exit fullscreen mode

Long story short the prepare-commit-msg is the one we need. The file we need to update is passed as first parameter.
Create a simple script:

#!/bin/sh

echo "Fancy commit message" > $1
Enter fullscreen mode Exit fullscreen mode

Make it executable:

$ chmod +z ~/.confog/git/hooks/prepare-commit-msg
Enter fullscreen mode Exit fullscreen mode

Is it works? Let's commit something ... Yep, we have a message at the end of the commit message.

Let's generate something:

Generating commit message

Let's build something that's works offline. AI? Yes, let's use AI!

We need model right?

Let's look at huggingface!

There it is: https://huggingface.co/mamiksik/T5-commit-message-generation but there is no docs :(
But if you'll look deeper you'll find https://huggingface.co/spaces/mamiksik/commit-message-generator

We can use this https://huggingface.co/spaces/mamiksik/commit-message-generator/blob/main/app.py with a little modifications.

As we can use any shell script in a hook, let's use python.

Let's take a look what's there:

import re

import gradio as gr
import torch
from transformers import T5ForConditionalGeneration, RobertaTokenizer


tokenizer = RobertaTokenizer.from_pretrained("mamiksik/CommitPredictorT5PL", revision="fb08d01")
model = T5ForConditionalGeneration.from_pretrained("mamiksik/CommitPredictorT5PL", revision="fb08d01")

def parse_files(patch):
    accumulator = []
    lines = patch.splitlines()

    filename_before = None
    for line in lines:
        if line.startswith("index") or line.startswith("diff"):
            continue
        if line.startswith("---"):
            filename_before = line.split(" ", 1)[1][1:]
            continue

        if line.startswith("+++"):
            filename_after = line.split(" ", 1)[1][1:]

            if filename_before == filename_after:
                accumulator.append(f"<ide><path>{filename_before}")
            else:
                accumulator.append(f"<add><path>{filename_after}")
                accumulator.append(f"<del><path>{filename_before}")
            continue

        line = re.sub("@@[^@@]*@@", "", line)
        if len(line) == 0:
            continue

        if line[0] == "+":
            line = line.replace("+", "<add>", 1)
        elif line[0] == "-":
            line = line.replace("-", "<del>", 1)
        else:
            line = f"<ide>{line}"

        accumulator.append(line)

    return '\n'.join(accumulator)


def predict(patch, max_length, min_length, num_beams, prediction_count):
    input_text = parse_files(patch)
    with torch.no_grad():
        token_count = tokenizer(input_text, return_tensors="pt").input_ids.shape[1]

        input_ids = tokenizer(
            input_text,
            truncation=True,
            padding=True,
            return_tensors="pt",
        ).input_ids

        outputs = model.generate(
            input_ids,
            max_length=max_length,
            min_length=min_length,
            num_beams=num_beams,
            num_return_sequences=prediction_count,
        )

    result = tokenizer.batch_decode(outputs, skip_special_tokens=True)
    return token_count, input_text, {k: 0 for k in result}


iface = gr.Interface(fn=predict, inputs=[
    gr.Textbox(label="Patch (as generated by git diff)"),
    gr.Slider(1, 128, value=40, label="Max message length"),
    gr.Slider(1, 128, value=5, label="Min message length"),
    gr.Slider(1, 10, value=7, label="Number of beams"),
    gr.Slider(1, 15, value=5, label="Number of predictions"),
], outputs=[
    gr.Textbox(label="Token count"),
    gr.Textbox(label="Parsed patch"),
    gr.Label(label="Predictions")
], examples=[
["""
diff --git a/.github/workflows/pylint.yml b/.github/workflows/codestyle_checks.yml
similarity index 86%
rename from .github/workflows/pylint.yml
rename to .github/workflows/codestyle_checks.yml
index a5d5c4d9..8cbf9713 100644
--- a/.github/workflows/pylint.yml
+++ b/.github/workflows/codestyle_checks.yml
@@ -20,3 +20,6 @@ jobs:
     - name: Analysing the code with pylint
       run: |
         pylint --rcfile=.pylintrc webapp core
+    - name: Analysing the code with flake8
+      run: |
+        flake8
""", 40, 5, 7, 5]
]
)

if __name__ == "__main__":
    iface.launch()
Enter fullscreen mode Exit fullscreen mode

Everything we need is here! We need to:

  • fetch gitmessage file to update
  • fetch git diff
  • use current script make predictions
  • prepend commit message to gitmessage file

File that we need to update is passed as first parameter so

import sys

sys.argv[1]
Enter fullscreen mode Exit fullscreen mode

Heh that was easy.

Fetch git diff

import subprocess

subprocess.run(['git', 'diff', '--cached'], capture_output=True).stdout.decode('utf-8')
Enter fullscreen mode Exit fullscreen mode

Easy peasy!

Use current script to make predictions

max_message = 40
min_message = 5
num_beams = 10
num_predictions = 1

msg = predict(diff, max_message, min_message, num_beams, num_predictions)
Enter fullscreen mode Exit fullscreen mode

Prepend our message to gitmessage file

with open(sys.argv[1], 'r+') as f:
    content = f.read()
    f.seek(0)
    f.write(msg + '\n' + content)
    f.close()
Enter fullscreen mode Exit fullscreen mode

It's just like that. With little cleanups this is our final script.

#!/usr/bin/env python
print("Generating commit message", end="", flush=True)

import sys
import re
import subprocess
import torch
from transformers import T5ForConditionalGeneration, RobertaTokenizer

def parse_files(patch):
    accumulator = []
    lines = patch.splitlines()

    filename_before = None
    for line in lines:
        print(".", end="", flush=True)
        if line.startswith("index") or line.startswith("diff"):
            continue
        if line.startswith("---"):
            filename_before = line.split(" ", 1)[1][1:]
            continue

        if line.startswith("+++"):
            filename_after = line.split(" ", 1)[1][1:]

            if filename_before == filename_after:
                accumulator.append(f"<ide><path>{filename_before}")
            else:
                accumulator.append(f"<add><path>{filename_after}")
                accumulator.append(f"<del><path>{filename_before}")
            continue

        line = re.sub("@@[^@@]*@@", "", line)
        if len(line) == 0:
            continue

        if line[0] == "+":
            line = line.replace("+", "<add>", 1)
        elif line[0] == "-":
            line = line.replace("-", "<del>", 1)
        else:
            line = f"<ide>{line}"

        accumulator.append(line)

    return '\n'.join(accumulator)

def predict(patch, max_length, min_length, num_beams, prediction_count):
    print(".", end="", flush=True)
    input_text = parse_files(patch)

    tokenizer = RobertaTokenizer.from_pretrained("mamiksik/CommitPredictorT5PL", revision="fb08d01", low_cpu_mem_usage=True)
    print(".", end="", flush=True)
    model = T5ForConditionalGeneration.from_pretrained("mamiksik/CommitPredictorT5PL", revision="fb08d01", low_cpu_mem_usage=True)
    print(".", end="", flush=True)

    with torch.no_grad():
        input_ids = tokenizer(
            input_text,
            truncation=True,
            padding=True,
            return_tensors="pt",
        ).input_ids
        print(".", end="", flush=True)
        outputs = model.generate(
            input_ids,
            max_length=max_length,
            min_length=min_length,
            num_beams=num_beams,
            num_return_sequences=prediction_count,
        )
        print(".", end="", flush=True)

    result = tokenizer.batch_decode(outputs, skip_special_tokens=True)
    return result[0]

if __name__ == "__main__":
    diff = subprocess.run(['git', 'diff', '--cached'], capture_output=True).stdout.decode('utf-8')

    max_message = 40
    min_message = 5
    num_beams = 10
    num_predictions = 1

    msg = predict(diff, max_message, min_message, num_beams, num_predictions)

    with open(sys.argv[1], 'r+') as f:
        content = f.read()
        f.seek(0)
        f.write(msg + '\n' + content)
        f.close()

    print("Done!\n")
Enter fullscreen mode Exit fullscreen mode

It's fast on cpu, but loading model take a lot of times. Anyway 3s is OK.
That's all. It works. At least for me.

Top comments (1)

Collapse
 
coolbeevip profile image
Lei Zhang

There is also a plugin like this in the JetBrains Marketplace.

plugins.jetbrains.com/plugin/24154...