DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

AugMix in PyTorch (10)

Buy Me a Coffee

*Memos:

AugMix() can randomly do AugMix to an image as shown below. *It's about chain_depth argument (3):

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import AugMix
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

cd0a50_data = OxfordIIITPet( # `cd` is chain_depth and `a` is alpha.
    root="data",
    transform=AugMix(chain_depth=0, alpha=50.0)
)

cd1a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(chain_depth=1, alpha=50.0)
)

cd2a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(chain_depth=2, alpha=50.0)
)

cd5a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(chain_depth=5, alpha=50.0)
)

cd10a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(chain_depth=10, alpha=50.0)
)

cd25a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(chain_depth=25, alpha=50.0)
)

cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(chain_depth=50, alpha=50.0)
)

s10mw50cd0a50_data = OxfordIIITPet( # `s` is severity.
    root="data",                    # `mw` is mixture_width.
    transform=AugMix(severity=10, mixture_width=50, chain_depth=0,
                     alpha=50.0)
)

s10mw50cd1a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=50, chain_depth=1,
                     alpha=50.0)
)

s10mw50cd2a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=50, chain_depth=2,
                     alpha=50.0)
)

s10mw50cd5a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=50, chain_depth=5,
                     alpha=50.0)
)

s10mw50cd10a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=50, chain_depth=10,
                     alpha=50.0)
)

s10mw50cd25a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=50, chain_depth=25,
                     alpha=50.0)
)

s10mw50cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=50, chain_depth=50,
                     alpha=50.0)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=cd0a50_data, main_title="cd0a50_data")
show_images1(data=cd1a50_data, main_title="cd1a50_data")
show_images1(data=cd2a50_data, main_title="cd2a50_data")
show_images1(data=cd5a50_data, main_title="cd5a50_data")
show_images1(data=cd10a50_data, main_title="cd10a50_data")
show_images1(data=cd25a50_data, main_title="cd25a50_data")
show_images1(data=cd50a50_data, main_title="cd50a50_data")
print()
show_images1(data=s10mw50cd0a50_data, main_title="s10mw50cd0a50_data")
show_images1(data=s10mw50cd1a50_data, main_title="s10mw50cd1a50_data")
show_images1(data=s10mw50cd2a50_data, main_title="s10mw50cd2a50_data")
show_images1(data=s10mw50cd5a50_data, main_title="s10mw50cd5a50_data")
show_images1(data=s10mw50cd10a50_data, main_title="s10mw50cd10a50_data")
show_images1(data=s10mw50cd25a50_data, main_title="s10mw50cd25a50_data")
show_images1(data=s10mw50cd50a50_data, main_title="s10mw50cd50a50_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=3, mw=3, cd=-1, a=1.0,
                 ao=True, ip=InterpolationMode.BILINEAR, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            am = AugMix(severity=s, mixture_width=mw, chain_depth=cd,
                        alpha=a, all_ops=ao, interpolation=ip, fill=f)
            plt.imshow(X=am(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="cd0a50_data", cd=0, a=50.0)
show_images2(data=origin_data, main_title="cd1a50_data", cd=1, a=50.0)
show_images2(data=origin_data, main_title="cd2a50_data", cd=2, a=50.0)
show_images2(data=origin_data, main_title="cd5a50_data", cd=5, a=50.0)
show_images2(data=origin_data, main_title="cd10a50_data", cd=10, a=50.0)
show_images2(data=origin_data, main_title="cd25a50_data", cd=25, a=50.0)
show_images2(data=origin_data, main_title="cd50a50_data", cd=50, a=50.0)
print()
show_images2(data=origin_data, main_title="s10mw50cd0a50_data", s=10, mw=50,
             cd=0, a=50.0)
show_images2(data=origin_data, main_title="s10mw50cd1a50_data", s=10, mw=50,
             cd=1, a=50.0)
show_images2(data=origin_data, main_title="s10mw50cd2a50_data", s=10, mw=50,
             cd=2, a=50.0)
show_images2(data=origin_data, main_title="s10mw50cd5a50_data", s=10, mw=50,
             cd=5, a=50.0)
show_images2(data=origin_data, main_title="s10mw50cd10a50_data", s=10, mw=50,
             cd=10, a=50.0)
show_images2(data=origin_data, main_title="s10mw50cd25a50_data", s=10, mw=50,
             cd=25, a=50.0)
show_images2(data=origin_data, main_title="s10mw50cd50a50_data", s=10, mw=50,
             cd=50, a=50.0)
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Quadratic AI

Quadratic AI – The Spreadsheet with AI, Code, and Connections

  • AI-Powered Insights: Ask questions in plain English and get instant visualizations
  • Multi-Language Support: Seamlessly switch between Python, SQL, and JavaScript in one workspace
  • Zero Setup Required: Connect to databases or drag-and-drop files straight from your browser
  • Live Collaboration: Work together in real-time, no matter where your team is located
  • Beyond Formulas: Tackle complex analysis that traditional spreadsheets can't handle

Get started for free.

Watch The Demo 📊✨

Top comments (0)

AWS Security LIVE!

Tune in for AWS Security LIVE!

Join AWS Security LIVE! for expert insights and actionable tips to protect your organization and keep security teams prepared.

Learn More

👋 Kindness is contagious

Thanks for reading! If you found this post useful, please consider leaving a ❤️ or a kind comment.

Absolutely!