DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

isclose and equal in PyTorch

Buy Me a Coffee

*Memos:

isclose() can check if the zero or more elements of the 1st 0D or more D tensor are equal or nearly equal to the zero or more elements of the 2nd 0D or more D tensor element-wise, getting the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • isclose() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is other(Required-Type:tensor of int, float, complex or bool).
  • The 3rd argument with torch or the 2nd argument with a tensor is rtol(Optional-Default:1e-05-Type:float).
  • The 4th argument with torch or the 3rd argument with a tensor is atol(Optional-Default:1e-08-Type:float).
  • The 5th argument with torch or the 4th argument with a tensor is equal_nan(Optional-Default:False-Type:bool): *Memos:
    • If it's True, nan and nan return True.
    • Basically, nan and nan return False.
  • The formula is |input - other| <= rtol x |other| + atol.
import torch

tensor1 = torch.tensor([1.00001001, 1.00000996, 1.00000995, torch.nan])
tensor2 = torch.tensor([1., 1., 1., torch.nan])

torch.isclose(input=tensor1, other=tensor2)
torch.isclose(input=tensor1, other=tensor2,
              rtol=1e-05, atol=1e-08, equal_nan=False)
            # 0.00001   # 0.00000001
tensor1.isclose(other=tensor2)
torch.isclose(input=tensor2, other=tensor1)
# tensor([False, False, True, False])

torch.isclose(input=tensor1, other=tensor2, equal_nan=True)
# tensor([False, False, True, True])

tensor1 = torch.tensor([[1.00001001, 1.00000996],
                        [1.00000995, torch.nan]])
tensor2 = torch.tensor([[1., 1.],
                        [1., torch.nan]])
torch.isclose(input=tensor1, other=tensor2)
torch.isclose(input=tensor2, other=tensor1)
# tensor([[False, False],
#         [True, False]])

tensor1 = torch.tensor([[[1.00001001],
                         [1.00000996]],
                        [[1.00000995],
                         [torch.nan]]])
tensor2 = torch.tensor([[[1.], [1.]],
                        [[1.], [torch.nan]]])
torch.isclose(input=tensor1, other=tensor2)
torch.isclose(input=tensor2, other=tensor1)
# tensor([[[False], [False]],
#         [[True], [False]]])

tensor1 = torch.tensor([[1.00001001, 1.00000996],
                        [1.00000995, torch.nan]])
tensor2 = torch.tensor([1., 1.])

torch.isclose(input=tensor1, other=tensor2)
torch.isclose(input=tensor2, other=tensor1)
# tensor([[False, False],
#         [True, False]])

tensor1 = torch.tensor([[1.00001001, 1.00000996],
                        [1.00000995, torch.nan]])
tensor2 = torch.tensor(1.)

torch.isclose(input=tensor1, other=tensor2)
torch.isclose(input=tensor2, other=tensor1)
# tensor([[False, False],
#         [True, False]])

tensor1 = torch.tensor([0, 1, 2])
tensor2 = torch.tensor(1)

torch.isclose(input=tensor1, other=tensor2)
# tensor([False, True, False])

tensor1 = torch.tensor([0.+0.j, 1.+0.j, 2.+0.j])
tensor2 = torch.tensor(1.+0.j)

torch.isclose(input=tensor1, other=tensor2)
# tensor([False, True, False])

tensor1 = torch.tensor([False, True, False])
tensor2 = torch.tensor(True)

torch.isclose(input=tensor1, other=tensor2)
# tensor([False, True, False])
Enter fullscreen mode Exit fullscreen mode

equal() can check if two of 0D or more D tensors have the same size and elements, getting the scalar of a boolean value as shown below:

*Memos:

  • equal() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is other(Required-Type:tensor of int, float, complex or bool).
import torch

tensor1 = torch.tensor([5, 9, 3])
tensor2 = torch.tensor([5, 9, 3])

torch.equal(input=tensor1, other=tensor2)
tensor1.equal(other=tensor2)
torch.equal(input=tensor2, other=tensor1)
# True

tensor1 = torch.tensor([5, 9, 3])
tensor2 = torch.tensor([7, 9, 3])

torch.equal(input=tensor1, other=tensor2)
torch.equal(input=tensor2, other=tensor1)
# False

tensor1 = torch.tensor([5, 9, 3])
tensor2 = torch.tensor([[5, 9, 3]])

torch.equal(input=tensor1, other=tensor2)
torch.equal(input=tensor2, other=tensor1)
# False

tensor1 = torch.tensor([5., 9., 3.])
tensor2 = torch.tensor([5.+0.j, 9.+0.j, 3.+0.j])

torch.equal(input=tensor1, other=tensor2)
torch.equal(input=tensor2, other=tensor1)
# True

tensor1 = torch.tensor([1.+0.j, 0.+0.j, 1.+0.j])
tensor2 = torch.tensor([True, False, True])

torch.equal(input=tensor1, other=tensor2)
torch.equal(input=tensor2, other=tensor1)
# True

tensor1 = torch.tensor([], dtype=torch.int64)
tensor2 = torch.tensor([], dtype=torch.float32)

torch.equal(input=tensor1, other=tensor2)
torch.equal(input=tensor2, other=tensor1)
# True
Enter fullscreen mode Exit fullscreen mode

Top comments (0)