*Memos:
- My post explains Linear layer(Fully-connected Layer).
- My post explains manual_seed().
- My post explains requires_grad.
Linear() can get the 1D or more D tensor of the zero or more elements computed by Affine transformation from the 1D or more D tensor of zero or more elements as shown below:
*Memos:
- The 1st argument for initialization is
in_features
(Required-Type:float
orcomplex
). *It must be0 <= x
. - The 2nd argument for initialization is
out_features
(Required-Default:False
-Type:float
): *Memos:- It must be
0 <= x
. -
0
is possible but warning occurs.
- It must be
- The 3rd argument for initialization is
bias
(Optional-Default:True
-Type:bool
). *My post explainsbias
argument. - The 4th argument for initialization is
device
(Optional-Default:None
-Type:str
,int
or device()): *Memos:- If it's
None
, get_default_device() is used. *My post explainsget_default_device()
and set_default_device(). -
device=
can be omitted. -
My post explains
device
argument.
- If it's
- The 5th argument for initialization is
dtype
(Optional-Default:None
-Type:dtype): *Memos:- If it's
None
, get_default_dtype() is used. *My post explainsget_default_dtype()
and set_default_dtype(). -
dtype=
can be omitted. -
My post explains
dtype
argument.
- If it's
- The 1st argument is
input
(Required-Type:tensor
offloat
): *Memos:- It must be the 1D or more D tensor of zero or more elements.
- The number of the elements of the deepest dimension must be same as
in_features
. - Its
device
anddtype
must be same asLinear()
's. -
complex
must be set todtype
ofLinear()
to use acomplex
tensor. - The tensor's
requires_grad
which isFalse
by default is set toTrue
byLinear()
.
-
linear1.device
andlinear1.dtype
don't work.
import torch
from torch import nn
tensor1 = torch.tensor([8., -3., 0., 1., 5., -2.])
tensor1.requires_grad
# False
torch.manual_seed(42)
linear1 = nn.Linear(in_features=6, out_features=3)
tensor2 = linear1(input=tensor1)
tensor2
# tensor([1.0529, -0.8833, 3.4542], grad_fn=<ViewBackward0>)
tensor2.requires_grad
# True
linear1
# Linear(in_features=6, out_features=4, bias=True)
linear1.in_features
# 6
linear1.out_features
# 3
linear1.bias
# Parameter containing:
# tensor([-0.1906, 0.1041, -0.1881], requires_grad=True)
linear1.weight
# Parameter containing:
# tensor([[0.3121, 0.3388, -0.0956, 0.3750, -0.0894, 0.0824],
# [-0.1988, 0.2398, 0.3599, -0.2995, 0.3548, 0.0764],
# [0.3016, 0.0553, 0.1969, -0.0576, 0.3147, 0.0603]],
# requires_grad=True)
torch.manual_seed(42)
linear2 = nn.Linear(in_features=3, out_features=3)
linear2(input=tensor2)
# tensor([-0.8493, 1.5744, 1.2707], grad_fn=<ViewBackward0>)
torch.manual_seed(42)
linear = nn.Linear(in_features=6, out_features=3, bias=True,
device=None, dtype=None)
linear(input=tensor1)
# tensor([1.0529, -0.8833, 3.4542], grad_fn=<ViewBackward0>)
my_tensor = torch.tensor([[8., -3., 0.],
[1., 5., -2.]])
torch.manual_seed(42)
linear = nn.Linear(in_features=3, out_features=3)
linear(input=my_tensor)
# tensor([[1.6701, 5.1242, -3.1578],
# [2.6844, 0.1667, 0.5044]], grad_fn=<AddmmBackward0>)
my_tensor = torch.tensor([[[8.], [-3.], [0.]],
[[1.], [5.], [-2.]]])
torch.manual_seed(42)
linear = nn.Linear(in_features=1, out_features=3)
linear(input=my_tensor)
# tensor([[[7.0349, 6.4210, -1.6724],
# [-1.3750, -2.7091, 0.9046],
# [0.9186, -0.2191, 0.2018]],
# [[1.6831, 0.6109, -0.0325],
# [4.7413, 3.9309, -0.9696],
# [-0.6105, -1.8791, 0.6703]]], grad_fn=<ViewBackward0>)
my_tensor = torch.tensor([[[8.+0.j], [-3.+0.j], [0.+0.j]],
[[1.+0.j], [5.+0.j], [-2.+0.j]]])
torch.manual_seed(42)
linear = nn.Linear(in_features=1, out_features=3, dtype=torch.complex64)
linear(input=my_tensor)
# tensor([[[5.6295+7.2273j, -0.9926+6.6153j, -0.8836+1.8015j],
# [-2.7805-1.9027j, 1.5844-3.4895j, 1.5265-0.4182j],
# [-0.4869+0.5873j, 0.8815-0.7336j, 0.8692+0.1872j]],
# [[0.2777+1.4173j, 0.6473+0.1850j, 0.6501+0.3889j],
# [3.3358+4.7373j, -0.2898+3.8594j, -0.2263+1.1961j],
# [-2.0159-1.0727j, 1.3501-2.5709j, 1.3074-0.2164j]]],
# grad_fn=<ViewBackward0>)
Top comments (0)