*Memos:
tile() can get the 1D or more D tensor of zero or more repeated elements from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
tile()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - The 2nd argument with
torch
or the 1st or more arguments with a tensor aredims
(Required-Type:tuple
ofint
,list
ofint
or size()): *Memos:- If at least one dimension is
0
, an empty tensor is returned. -
dims=
mustn't be used for the one or more dimensions without a tuple or list.
- If at least one dimension is
import torch
my_tensor = torch.tensor([7, 4, 5])
torch.tile(input=my_tensor, dims=(0,))
my_tensor.tile(dims=(0,))
my_tensor.tile(0,)
torch.tile(input=my_tensor, dims=torch.tensor([]).size())
# tensor([], dtype=torch.int64)
torch.tile(input=my_tensor, dims=())
torch.tile(input=my_tensor, dims=(1,))
torch.tile(input=my_tensor, dims=torch.tensor(8).size())
torch.tile(input=my_tensor, dims=torch.tensor([8]).size())
# tensor([7, 4, 5])
torch.tile(input=my_tensor, dims=(2,))
torch.tile(input=my_tensor, dims=torch.tensor([8, 3]).size())
# tensor([7, 4, 5, 7, 4, 5])
torch.tile(input=my_tensor, dims=(3,))
torch.tile(input=my_tensor, dims=torch.tensor([8, 3, 6]).size())
# tensor([7, 4, 5, 7, 4, 5, 7, 4, 5])
etc.
torch.tile(input=my_tensor, dims=(1, 1))
torch.tile(input=my_tensor, dims=torch.tensor([[8]]).size())
# tensor([[7, 4, 5]])
torch.tile(input=my_tensor, dims=(1, 2))
torch.tile(input=my_tensor, dims=torch.tensor([[8, 3]]).size())
# tensor([[7, 4, 5, 7, 4, 5]])
torch.tile(input=my_tensor, dims=(1, 3))
torch.tile(input=my_tensor, dims=torch.tensor([[8, 2, 4]]).size())
# tensor([[3, 5, 1, 3, 5, 1, 3, 5, 1]])
etc.
torch.tile(input=my_tensor, dims=(2, 1))
torch.tile(input=my_tensor, dims=torch.tensor([[8], [2]]).size())
# tensor([[3, 5, 1],
# [3, 5, 1]])
torch.tile(input=my_tensor, dims=(2, 2))
torch.tile(input=my_tensor, dims=torch.tensor([[8, 2], [4, 0]]).size())
# tensor([[3, 5, 1, 3, 5, 1],
# [3, 5, 1, 3, 5, 1]])
torch.tile(input=my_tensor, dims=(2, 3))
torch.tile(input=my_tensor, dims=torch.tensor([[8, 2, 4], [0, 7, 9]]).size())
# tensor([[3, 5, 1, 3, 5, 1, 3, 5, 1],
# [3, 5, 1, 3, 5, 1, 3, 5, 1]])
etc.
torch.tile(input=my_tensor, dims=(3, 1))
torch.tile(input=my_tensor, dims=torch.tensor([[8], [2], [4]]).size())
# tensor([[3, 5, 1],
# [3, 5, 1],
# [3, 5, 1]])
etc.
torch.tile(input=my_tensor, dims=(1, 1, 1))
torch.tile(input=my_tensor, dims=torch.tensor([[[8]]]).size())
# tensor([[[3, 5, 1]]])
etc.
torch.tile(input=my_tensor, dims=(3, 2, 1))
# tensor([[[3, 5, 1], [3, 5, 1]],
# [[3, 5, 1], [3, 5, 1]],
# [[3, 5, 1], [3, 5, 1]]])
torch.tile(input=my_tensor, dims=(1, 0, 1))
# tensor([], size=(1, 0, 3), dtype=torch.int64)
my_tensor = torch.tensor([3., 5., 1.])
torch.tile(input=my_tensor, dims=(2,))
# tensor([3., 5., 1., 3., 5., 1.])
my_tensor = torch.tensor([3.+0.j, 5.+0.j, 1.+0.j])
torch.tile(input=my_tensor, dims=(2,))
# tensor([3.+0.j, 5.+0.j, 1.+0.j, 3.+0.j, 5.+0.j, 1.+0.j])
my_tensor = torch.tensor([True, False, True])
torch.tile(input=my_tensor, dims=(2,))
# tensor([True, False, True, True, False, True])
my_tensor = torch.tensor([[3, 5, 1],
[6, 0, 5]])
torch.tile(input=my_tensor, dims=())
torch.tile(input=my_tensor, dims=(1,))
torch.tile(input=my_tensor, dims=torch.tensor(8).size())
torch.tile(input=my_tensor, dims=torch.tensor([8]).size())
# tensor([[3, 5, 1],
# [6, 0, 5]])
torch.tile(input=my_tensor, dims=(2,))
torch.tile(input=my_tensor, dims=torch.tensor([8, 2]).size())
# tensor([[3, 5, 1, 3, 5, 1],
# [6, 0, 5, 6, 0, 5]])
torch.tile(input=my_tensor, dims=(3,))
torch.tile(input=my_tensor, dims=torch.tensor([8, 2, 4]).size())
# tensor([[3, 5, 1, 3, 5, 1, 3, 5, 1],
# [6, 0, 5, 6, 0, 5, 6, 0, 5]])
etc.
torch.tile(input=my_tensor, dims=(1, 1))
torch.tile(input=my_tensor, dims=torch.tensor([[8]]).size())
# tensor([[3, 5, 1],
# [6, 0, 5]])
torch.tile(input=my_tensor, dims=(1, 2))
torch.tile(input=my_tensor, dims=torch.tensor([[8, 2]]).size())
# tensor([[3, 5, 1, 3, 5, 1],
# [6, 0, 5, 6, 0, 5]])
torch.tile(input=my_tensor, dims=(1, 3))
torch.tile(input=my_tensor, dims=torch.tensor([[8, 2, 4]]).size())
# tensor([[3, 5, 1, 3, 5, 1, 3, 5, 1],
# [6, 0, 5, 6, 0, 5, 6, 0, 5]])
etc.
torch.tile(input=my_tensor, dims=(2, 1))
torch.tile(input=my_tensor, dims=torch.tensor([[8], [2]]).size())
# tensor([[3, 5, 1],
# [6, 0, 5],
# [3, 5, 1],
# [6, 0, 5]])
torch.tile(input=my_tensor, dims=(2, 2))
torch.tile(input=my_tensor, dims=torch.tensor([[8, 2], [4, 0]]).size())
# tensor([[3, 5, 1, 3, 5, 1],
# [6, 0, 5, 6, 0, 5],
# [3, 5, 1, 3, 5, 1],
# [6, 0, 5, 6, 0, 5]])
torch.tile(input=my_tensor, dims=(2, 3))
torch.tile(input=my_tensor, dims=torch.tensor([[8, 2, 4], [0, 7, 9]]).size())
# tensor([[3, 5, 1, 3, 5, 1, 3, 5, 1],
# [6, 0, 5, 6, 0, 5, 6, 0, 5],
# [3, 5, 1, 3, 5, 1, 3, 5, 1],
# [6, 0, 5, 6, 0, 5, 6, 0, 5]])
etc.
torch.tile(input=my_tensor, dims=(3, 1))
torch.tile(input=my_tensor, dims=torch.tensor([[8], [2], [4]]).size())
# tensor([[3, 5, 1],
# [6, 0, 5],
# [3, 5, 1],
# [6, 0, 5],
# [3, 5, 1],
# [6, 0, 5]])
etc.
torch.tile(input=my_tensor, dims=(1, 1, 1))
torch.tile(input=my_tensor, dims=torch.tensor([[[8]]]).size())
# tensor([[[3, 5, 1],
# [6, 0, 5]]])
etc.
Top comments (0)