DEV Community

Cover image for Getting started with Python Packaging
jldec
jldec

Posted on • Edited on • Originally published at jldec.me

Getting started with Python Packaging

Let's do some Python

In preparation for using a lot more Python, I decided to refresh my Python knowedge and publish my first Python module at https://pypi.org/project/shortscale/.

Some readers may recognize shortscale from earlier explorations in JavaScript, Rust, and Go.

This post covers the following steps:

  1. Install Python on macOS
  2. Write the skeleton code, with just a one-line function.
  3. Build and publish the incomplete v0.1 module.
  4. Complete the logic v1.0.0.
  5. Benchmarks
  6. Python in the browser
  7. Jupyter notebooks

Install python v3.10 (the hard way)

Installing Python on macOS is easiest with the official installer or with homebrew.

I wanted a way to switch between Python versions, so I followed the instructions for pyenv.

NOTE: This does a full local build of CPython, and requires dependencies different from the macOS command line tools.

# 1. Install pyenv 
# from https://github.com/pyenv/pyenv#set-up-your-shell-environment-for-pyenv
git clone https://github.com/pyenv/pyenv.git $HOME/.pyenv
export PYENV_ROOT="$HOME/.pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"
eval "$(pyenv init --path)"

# 2. Fix dependencies for macOS 
# from https://github.com/pyenv/pyenv/wiki#suggested-build-environment
brew install openssl readline sqlite3 xz zlib tcl-tk

# 3. After the brew install, fix LDFLAGS, CPPFLAGS and add tcl-tk/bin onto PATH 
export LDFLAGS="$LDFLAGS -L$HOME/homebrew/opt/openssl@3/lib -L$HOME/homebrew/opt/readline/lib -L$HOME/homebrew/opt/sqlite/lib -L$HOME/homebrew/opt/zlib/lib -L$HOME/homebrew/opt/tcl-tk/lib -L$HOME/homebrew/opt/openssl@3/lib -L$HOME/homebrew/opt/readline/lib -L$HOME/homebrew/opt/sqlite/lib -L$HOME/homebrew/opt/zlib/lib -L$HOME/homebrew/opt/tcl-tk/lib"
export CPPFLAGS="$CPPFLAGS -I$HOME/homebrew/opt/openssl@3/include -I$HOME/homebrew/opt/readline/include -I$HOME/homebrew/opt/sqlite/include -I$HOME/homebrew/opt/zlib/include -I$HOME/homebrew/opt/tcl-tk/include -I$HOME/homebrew/opt/openssl@3/include -I$HOME/homebrew/opt/readline/include -I$HOME/homebrew/opt/sqlite/include -I$HOME/homebrew/opt/zlib/include -I$HOME/homebrew/opt/tcl-tk/include"
export PATH=$HOME/homebrew/opt/tcl-tk/bin:$PATH

# 4. Use pyenv to build and install python v3.10 and make it the global default
pyenv install 3.10
pyenv global 3.10

# Point to the installed version in  .bash_profile (instead of depending on the pyenv shim)
export PATH=$HOME/.pyenv/versions/3.10.9/bin:$PATH
Enter fullscreen mode Exit fullscreen mode

Virtual environments and pip

Python modules and their dependencies can be installed from pypi.org using pip install.

Configuring a virtual environment will isolate modules under a .venv directory, which is easy to clean up, rather than installing everything globally.

I created a venv under my home directory.

python3 -m venv ~/.venv
Enter fullscreen mode Exit fullscreen mode

Instead of "activating" the venv, which changes the prompt, I prepended the .venv/bin directory onto my PATH.

export PATH=$HOME/.venv/bin:$PATH
Enter fullscreen mode Exit fullscreen mode

Create a new module called shortscale

First I wrote a skeleton shortscale function which just returns a string with the input.

The rest of the code is boilerplate, to make the function callable on the command line. Passing base=0 to int() enables numeric literal input with different bases.

shortscale.py

"""English conversion from number to string"""
import sys

__version__ = "0.1.0"

def shortscale(num: int) -> str:
  return '{} ({} bits)'.format(num, num.bit_length())

def main():
  if len(sys.argv) < 2:
    print ('Usage: shortscale num')
    sys.exit(1)

  print(shortscale(int(sys.argv[1],0)))
  sys.exit(0)

if __name__ == '__main__':
  main()

Enter fullscreen mode Exit fullscreen mode

The output looks like this:

$ python shortscale.py 0x42
66 (7 bits)
Enter fullscreen mode Exit fullscreen mode

Next, I built and published this incomplete v0.1 shortscale module.

Unlike the npm JavaScript ecosystem, you can't just use pip to publish a module to the pypi repository. There are different build tools to choose from.

I chose setuptools because it appears to be the recommended tool, and shows what it's doing. This meant installing build and twine.

Python packages are described in a pyproject.toml. Note that project.scripts points to the CLI entrypoint at main().

pyproject.toml

[project]
name = "shortscale"
description = "English conversion from number to string"
authors = [{name = "Jürgen Leschner", email = "jldec@users.noreply.github.com"}]
readme = "README.md"
license = {file = "LICENSE"}
classifiers = ["License :: OSI Approved :: MIT License"]
dynamic = ["version"]

[project.urls]
Home = "https://github.com/jldec/shortscale-py"

[project.scripts]
shortscale = "shortscale:main"

[build-system]
requires = ["setuptools>=61.0"]
build-backend = "setuptools.build_meta"

[tool.setuptools.dynamic]
version = {attr = "shortscale.__version__"}
Enter fullscreen mode Exit fullscreen mode

Build the module

The build tool creates 2 module bundles (source and runnable code) in the ./dist directory.

$ python -m build
...
Successfully built shortscale-0.1.0.tar.gz and shortscale-0.1.0-py3-none-any.whl
Enter fullscreen mode Exit fullscreen mode

Publish to pypi.org

$ python -m twine upload dist/*
Uploading distributions to https://upload.pypi.org/legacy/
Uploading shortscale-0.1.0-py3-none-any.whl
Uploading shortscale-0.1.0.tar.gz
...
View at:
https://pypi.org/project/shortscale/0.1.0/
Enter fullscreen mode Exit fullscreen mode

Install and run in a venv

The moment of truth. Install the module in a new venv, and invoke it.

$ mkdir test
$ cd test
$ python -m venv .venv
$ source .venv/bin/activate

(.venv) $ pip install shortscale
...
Successfully installed shortscale-0.1.0

(.venv) $ shortscale 0xffffffffffff
281474976710655 (48 bits)

$ deactivate
Enter fullscreen mode Exit fullscreen mode

Complete the logic

Python still amazes me with its terseness and readability.

The first iteration had 3 functions, of which the longest had 30 lines with generous spacing.

One of those functions decomposes a number into powers of 1000.

def powers_of_1000(n: int):
    """
    Return list of (n, exponent) for each power of 1000.
    List is ordered highest exponent first.
    n = 0 - 999.
    exponent = 0,1,2,3...
    """
    p_list = []
    exponent = 0
    while n > 0:
        p_list.insert(0, (n % 1000, exponent))
        n = n // 1000
        exponent += 1

    return p_list
Enter fullscreen mode Exit fullscreen mode

Playing aound in a Jupyter notebook, I was able to eliminate the extra function (and the list which it returns), simply by reversing the order of building the shortscale output.

Screenshot of a Jupyter notebook in VS Code exploring shortscale

Using a Jupyter environment in VS Code is a clear win. The result was simpler and faster.

Testing

There is nice support for Python testing and debugging in VS Code.

The function to run unit tests took just 3 lines.

Screenshot of VS Code Test integration for pytest

Benchmarks

I was pleased with the benchmarks as well. For this string manipulation micro-benchmark, CPython 3.11 is only 1.5x slower than V8 JavaScript!

Compiled languages like Go and Rust will outperform that, but again, not by a huge amount.

The results below are from my personal M1 arm64 running macOS.

Python

Python v3.11.2

$ python tests/bench_shortscale.py

 50000 calls,    5000000 bytes,     1264 ns/call
100000 calls,   10000000 bytes,     1216 ns/call
200000 calls,   20000000 bytes,     1216 ns/call
Enter fullscreen mode Exit fullscreen mode

Python v3.10.9

$ python tests/bench_shortscale.py

 50000 calls,    5000000 bytes,     1811 ns/call
100000 calls,   10000000 bytes,     1808 ns/call
200000 calls,   20000000 bytes,     1809 ns/call
Enter fullscreen mode Exit fullscreen mode

Javascript

$ node test/bench.js

20000 calls, 2000000 bytes, 796 ns/call
20000 calls, 2000000 bytes, 790 ns/call
20000 calls, 2000000 bytes, 797 ns/call
Enter fullscreen mode Exit fullscreen mode

Go

$ go test -bench . -benchmem

BenchmarkShortscale-8        4227788           252.0 ns/op       248 B/op          5 allocs/op
Enter fullscreen mode Exit fullscreen mode

Rust

$ cargo bench

running 2 tests
test a_shortscale                        ... bench:         182 ns/iter (+/- 3)
test b_shortscale_string_writer_no_alloc ... bench:          63 ns/iter (+/- 2)
Enter fullscreen mode Exit fullscreen mode

Let's run shortscale in the browser

Open your browser on https://pyodide.org/en/stable/console.html and paste the following python commands into the python REPL, line by line.

import micropip
await micropip.install("shortscale")
import shortscale

shortscale.shortscale(0xffff0000)

shortscale.bench_shortscale()
Enter fullscreen mode Exit fullscreen mode

Screenshot of browser at https://pyodide.org/en/stable/console.html running shortscale

Looks like Python in WASM in the browser is about 2 to 3 times slower than native CPython.

GitHub and Google Colaboratory

Open the shortscale Jupyter notebook from GitHub in a Google Colaboratory environment

Screenshot of ipynb file in GitHub

https://colab.research.google.com/github/jldec/shortscale-py/blob/main/shortscale.ipynb

Screenshot of Google Colaboratory running at https://colab.research.google.com/github/jldec/shortscale-py/blob/main/shortscale.ipynb

Keep on learning 🚀

Top comments (0)