DEV Community

Cover image for πŸ’» Get started: MongoDB Atlas Vector Search πŸ”
Danny Chan for MongoDB Builders

Posted on

πŸ’» Get started: MongoDB Atlas Vector Search πŸ”

Key features:

  • Use vector embeddings with ML models (OpenAI, Hugging Face) πŸ€–
  • Store data, metadata, and vector embeddings on Atlas πŸ’Ύ
  • Leverage Atlas Vector Search for:
    • Retrieval Augmented Generation (RAG) 🧠
    • Semantic search πŸ”
    • Recommendation engines πŸ“Š
    • Dynamic personalization πŸ‘€


Build faster and easier:

  • No need to copy or transfer data πŸš€
  • Store vector embeddings alongside source data and metadata πŸ“š
  • Vector embeddings within application data, create vector index πŸ”—

Hassle-free database management:

  • Auto provisioning, patching, upgrades, scaling, security, disaster recovery πŸ€–


Vectors:

  • Numeric representation of data and related context πŸ“Š
  • Measure semantic similarity by vector distance 🌐
  • Use cases: RAG, semantic search πŸ”


Atlas Vector Search:

  • Search vector embeddings alongside operational data πŸ”
  • Avoid data sync, save money πŸ’°
  • Support LlamaIndex, OpenAI, Hugging Face, LangChain πŸ€–


Hybrid search:

  • Combine full-text and vector search πŸ”
  • Accuracy of full-text, semantic capabilities of vector search 🎯


Infrastructure:

  • Independently scalable, eliminate risk πŸ”’
  • High resource contention, low downtime πŸ’ͺ


Atlas Search Nodes:

  • Auto scale search workloads πŸš€
  • Isolate search and database workloads πŸ”πŸ—„οΈ
  • Synchronized search cluster data, no ETL πŸ”„


RAGs minimize hallucinations:

  • Ground model's responses in factual information 🧠
  • Use up-to-date sources πŸ“š


Key use cases:

  • Semantic search πŸ”
  • Retrieval Augmented Generation (RAG) for business productivity πŸ‘¨β€πŸ’»


Compute-heavy search nodes:

  • Memory-optimized, low CPU option πŸ’»
  • Optimal for Vector Search πŸ”


Retrieve similar vectors:

  • Approximate Nearest Neighbor (ANN) algorithm πŸ”


Retrieve most similar vectors:

  • K Nearest Neighbor (KNN) search πŸ”
  • Hierarchical Navigable Small Worlds' (HNSW) algorithm πŸ”



Start your MongoDB Atlas Vector Search journey today! πŸš€πŸ’»



Reference:

Gradio: Build Machine Learning Web Apps β€” in Python
https://www.gradio.app/
https://github.com/gradio-app/gradio

https://www.mongodb.com/blog/post/retool-state-of-ai-report-mongodb-vector-search-most-loved-vector-database
Atlas Vector Search Once Again Voted Most Loved Vector Database

https://www.mongodb.com/products/platform/atlas-vector-search
Vector Search

https://www.mongodb.com/resources/basics/databases/document-databases
What is a Document Database?

https://www.mongodb.com/resources/solutions/use-cases/generative-ai-shaping-the-future-of-search
How Generative AI is Shaping The Future of Search

https://www.mongodb.com/products/tools/mongodb-query-api
Query API


Editor

Image description

Danny Chan, specialty of FSI and Serverless

Image description

Kenny Chan, specialty of FSI and Machine Learning

Top comments (0)