DEV Community

Hatch Bell
Hatch Bell

Posted on

COVID-19 Isolation along with Probability of Loss of life inside Malta Elderly People.

Friction between sliding surfaces is a fundamental phenomenon prevalent in many aspects of engineering. There are many sliding contact tribometers that measure friction force in a laboratory environment. However, the transfer of laboratory data to real machine elements is unreliable. Results depend on the specimen configuration, surface condition and environment. In this work, a method has been developed that uses the nonlinear response of a high-power ultrasonic wave to deduce friction coefficient in situ at an interface. When the high-power shear wave strikes a frictional interface, relative slip can occur. It imposes a nonlinear response and causes generation of higher-order odd frequency components in received ultrasonic signals. The amplitude of the harmonics depends on contact stress and local friction coefficient. This nonlinear ultrasonic response has been investigated both numerically and experimentally. A simple one-dimensional model has been used to predict nonlinearity generation. This model has been compared with experiments conducted on aluminium rough surfaces pressed together under increasing loads. Two strategies have been used to estimate the friction coefficient by correlating experimental and numerical third-order nonlinearity. It has proved possible to determine the friction coefficient in situ at the interface; values in the range of 0.22 to 0.61 were measured for different surface configurations.At equilibrium, the shape of a strongly anisotropic crystal exhibits corners when for some orientations the surface stiffness is negative. In the sharp-interface problem, the surface free energy is traditionally augmented with a curvature-dependent term in order to round the corners and regularize the dynamic equations that describe the motion of such interfaces. In this paper, we adopt a diffuse interface description and present a phase-field model for strongly anisotropic crystals that is regularized using an approximation of the Willmore energy. The Allen-Cahn equation is employed to model kinetically controlled crystal growth. Using the method of matched asymptotic expansions, it is shown that the model converges to the sharp-interface theory proposed by Herring. Then, the stress tensor is used to derive the force acting on the diffuse interface and to examine the properties of a corner at equilibrium. Finally, the coarsening dynamics of the faceting instability during growth is investigated. Phase-field simulations reveal the existence of a parabolic regime, with the mean facet length evolving in t , with t the time, as predicted by the sharp-interface theory. A specific coarsening mechanism is observed a hill disappears as the two neighbouring valleys merge.Electrohydrodynamic (EHD) thrust is produced when ionized fluid is accelerated in an electric field due to the momentum transfer between the charged species and neutral molecules. We extend the previously reported analytical model that couples space charge, electric field and momentum transfer to derive thrust force in one-dimensional planar coordinates. The electric current density in the model can be expressed in the form of Mott-Gurney law. After the correction for the drag force, the EHD thrust model yields good agreement with the experimental data from several independent studies. The EHD thrust expression derived from the first principles can be used in the design of propulsion systems and can be readily implemented in the numerical simulations.The ternary Golay code-one of the first and most beautiful classical error-correcting codes discovered-naturally gives rise to an 11-qutrit quantum error correcting code. We apply this code to magic state distillation, a leading approach to fault-tolerant quantum computing. We find that the 11-qutrit Golay code can distil the 'most magic' qutrit state-an eigenstate of the qutrit Fourier transform known as the strange state-with cubic error suppression and a remarkably high threshold. It also distils the 'second-most magic' qutrit state, the Norell state, with quadratic error suppression and an equally high threshold to depolarizing noise.Many problems in fluid mechanics and acoustics can be modelled by Helmholtz scattering off poro-elastic plates. We develop a boundary spectral method, based on collocation of local Mathieu function expansions, for Helmholtz scattering off multiple variable poro-elastic plates in two dimensions. Such boundary conditions, namely the varying physical parameters and coupled thin-plate equation, present a considerable challenge to current methods. Isoprenaline research buy The new method is fast, accurate and flexible, with the ability to compute expansions in thousands (and even tens of thousands) of Mathieu functions, thus making it a favourable method for the considered geometries. Comparisons are made with elastic boundary element methods, where the new method is found to be faster and more accurate. Our solution representation directly provides a sine series approximation of the far-field directivity and can be evaluated near or on the scatterers, meaning that the near field can be computed stably and efficiently. The new method also allows us to examine the effects of varying stiffness along a plate, which is poorly studied due to limitations of other available techniques. We show that a power-law decrease to zero in stiffness parameters gives rise to unexpected scattering and aeroacoustic effects similar to an acoustic black hole metamaterial.Eigenfunctions and their asymptotic behaviour at large distances for the Laplace operator with singular potential, the support of which is on a circular conical surface in three-dimensional space, are studied. Within the framework of incomplete separation of variables an integral representation of the Kontorovich-Lebedev (KL) type for the eigenfunctions is obtained in terms of solution of an auxiliary functional difference equation with a meromorphic potential. Solutions of the functional difference equation are studied by reducing it to an integral equation with a bounded self-adjoint integral operator. To calculate the leading term of the asymptotics of eigenfunctions, the KL integral representation is transformed to a Sommerfeld-type integral which is well adapted to application of the saddle point technique. Outside a small angular vicinity of the so-called singular directions the asymptotic expression takes on an elementary form of exponent decreasing in distance. However, in an asymptotically small neighbourhood of singular directions, the leading term of the asymptotics also depends on a special function closely related to the function of parabolic cylinder (Weber function).Isoprenaline research buy

Top comments (0)