DEV Community

Alyonkka for Qdrant

Posted on

Finding errors in datasets with Similarity Search

Nowadays, people create a huge number of applications of various types and solve problems in different areas. Despite such diversity, they have something in common - they need to process data. Real-world data is a living structure, it grows day by day, changes a lot and becomes harder to work with.

In some cases, you need to categorize or label your data, which can be a tough problem given its scale. The process of splitting or labelling is error-prone and these errors can be very costly. Imagine that you failed to achieve the desired quality of the model due to inaccurate labels. Worse, your users are faced with a lot of irrelevant items, unable to find what they need and getting annoyed by it. Thus, you get poor retention, and it directly impacts company revenue. It is really important to avoid such errors in your data.

ML Engineer at Qdrant, George Panchuk, describes hot to define labeling errors in datasets with similarity search. Read more https://qdrant.tech/articles/dataset-quality/

Category vs. Title and Image

Top comments (0)