DEV Community

Cover image for STONKS APP πŸ“ˆπŸ“‰- Stocks helper for Beginners
Rounak Sen
Rounak Sen

Posted on

STONKS APP πŸ“ˆπŸ“‰- Stocks helper for Beginners

This is a submission for the Cloudflare AI Challenge.

What I Built

  • Stonks is a beginner-friendly stock information app that provides an intuitive and user-friendly platform for accessing stock data and insights.
  • It is a web-based application built on Streamlit, leveraging the power of serverless Cloudflare Workers and Workers AI to generate stock information from the polygon.io API.

Demo

STONKS APP πŸ“ˆπŸ“‰

Stonks app backend

Image description

Image description

Image description

Image description

My Code

The code for the Stonks App is available on GitHub:

  • Streamlit app https://github.com/rony0000013/stonks

    GitHub logo rony0000013 / stonks

    Stonks is a beginner-friendly πŸ‘‹ stock information app that revolutionizes the way you access and understand stock data. Built on Streamlit πŸ’», it leverages serverless Cloudflare Workers ☁️ and Workers AI πŸ€– to generate insightful stock summaries from polygon.io API πŸ“Š.

    Stonks App πŸ“ˆπŸ“‰

    Streamlit App

    Features

    • Stock Summary: Get a comprehensive overview of stocks, including daily price charts and essential information.
    • Multi-Language Support: Access stock information in multiple languages, ensuring accessibility for a global audience.
    • News and Sentiment Analysis: Stay up-to-date with recent news related to stocks, accompanied by sentiment analysis for better decision-making.
    • Customizable Date: Users can customize the date to obtain stock information tailored to their specific needs.
    • LLM Model Selection: Choose from various Large Language Models (LLMs) to generate stock information based on individual preferences.

    Getting Started

    Prerequisites - Python and Poetry, Stonks-worker deployed or running locally

    To run the Stonks App locally, follow these steps:

    1. Clone the repository:

      git clone https://github.com/rony0000013/stonks.git
      Enter fullscreen mode Exit fullscreen mode
    2. Install the dependencies:

      poetry install
      Enter fullscreen mode Exit fullscreen mode
    3. Add stonks worker deployed link in .streamlit/secrets.toml

      url = "<your-deployment-link>
      Enter fullscreen mode Exit fullscreen mode
    4. Run the app

      poetry run streamlit run main.py
      Enter fullscreen mode Exit fullscreen mode

    Contributing

    Contributions to the Stonks App are welcome…



  • Cloudflare Worker https://github.com/rony0000013/stonks-worker

    GitHub logo rony0000013 / stonks-worker

    Stonks is a beginner-friendly πŸ‘‹ stock information app that revolutionizes the way you access and understand stock data. Built on Streamlit πŸ’», it leverages serverless Cloudflare Workers ☁️ and Workers AI πŸ€– to generate insightful stock summaries from polygon.io API πŸ“Š.

    Stonks App Worker

    Description

    This repository contains the code for a Cloudflare Worker of the stonks app. stonks app is a beginner friendly app for getting stock information of various stocks.

    Features

    • Stock Summary: Get a comprehensive overview of stocks, including daily price charts and essential information.

    • Multi-Language Support: Access stock information in multiple languages, ensuring accessibility for a global audience.

    • News and Sentiment Analysis: Stay up-to-date with recent news related to stocks, accompanied by sentiment analysis for better decision-making.

    • Customizable Date: Users can customize the date to obtain stock information tailored to their specific needs.

    • LLM Model Selection: Choose from various Large Language Models (LLMs) to generate stock information based on individual preferences.

    Getting Started

    To get started with this Cloudflare Worker, follow these steps:

    1. Clone this repository:

      git clone https://github.com/your-username/your-repo.git
      Enter fullscreen mode Exit fullscreen mode
    2. Install the required dependencies:

      npm install
      Enter fullscreen mode Exit fullscreen mode
    3. Configure your Cloudflare account and obtain your…

Tech Stack -

  1. Streamlit - to build and deploy the app
  2. fuzzywuzzy - to search voice text to the ticker data
  3. Pytickersymbols - to get all stock tickers
  4. Plotly - do display the stock candlestick chart
  5. Poetry - to manage libraries and project
  6. Wrangler - to manage and deploy the worker
  7. hono - backend server to handle requests to the worker
  8. cloudflare workers ai - to run the ai models serverlessly
  9. cloudflare kv - to cache the worker requests
  10. cloudflare workers - to deploy and run the server

The repository includes a README file with installation instructions, as well as a LICENSE file for the project.

Journey

  • The development of the Stonks App was an exciting and challenging journey. I utilized various technologies and models to create this beginner-friendly stock information platform.

  • I was planning on building a easy way to view information about stocks since huge percent of indians are not stock investors. so th opportunity to build such an app with cloudflare was very intresting. But the only thing was that i saw that on 12/04/2024 with only 2 more days remaining !!

  • I started with the backend/worker. the start was pretty easy to my surprise thanks to the video from cloudflare Youtube Video πŸ“Ί. Since my first time using Cloudflare Workers, Hono and Typecript (relatively more). So the start was easy.

  • I really liked the Wrangler CLI very intuitive to use. The workers AI models used pretty well and documentation was plenty. The Ploygon API also has clean docs with easy to use API. Cloudflare KV was very easy to implement the caching mechanism. I was not able to implement the swagger ui like the one in fastapi.

  • For the frontend It was my first time to use streamlit to build a website size app with complex logics. It was more or less okay.

  • The main trail to problems arised when I joined frontend and backend. both had to be changed several times to pass data correctly to each other and also the caching was implemented in multiple stages like in api routes, api calling, streamlit functions which ultimately prevented the potential problem of too many requests to use up my api limits.

  • I had an idea of generating the stock candlestick graph and stylize it with the image generation models. First problem was getiing the chart image. After searching various libraries

  • I came to a realization that was cloudflare workers is a serverless environment usual javascript libraries which call with DOM to generate charts did not work. After trying multiple times I ultimately decided that python's Plotly will do the chart creation.

  • Second problem arose when I tried to modify image using workers ai models. Here I realized that most except stable-diffusion-v1-5-img2img was not able to take input an image despite given in the docs input schema. The output of the only model which was able to stylize was very poor. So, I gave up on this Idea.

  • Rest all models were easy to implement in the app and I ultimately was able to finish this in 2 days.

  • Looking ahead, I plan to improve the Stonks App by adding new features and exploring additional ways to leverage Workers AI. Some potential enhancements include implementing advanced stock analysis models, implementing a more fun and easy way to show stock charts.

Multiple Models and/or Triple Task Types

The Stonks App utilized multiple models from Workers AI to generate stock information, news analysis, and sentiment analysis.

  • Generating the stock information and chatting with stock data was done by

    [
        "@hf/thebloke/zephyr-7b-beta-awq",
        "@cf/qwen/qwen1.5-0.5b-chat",
        "@hf/nexusflow/starling-lm-7b-beta",
        "@hf/thebloke/llamaguard-7b-awq",
        "@hf/thebloke/neural-chat-7b-v3-1-awq",
        "@cf/meta/llama-2-7b-chat-fp16",
        "@cf/mistral/mistral-7b-instruct-v0.1",
        "@cf/tinyllama/tinyllama-1.1b-chat-v1.0",
        "@hf/mistral/mistral-7b-instruct-v0.2",
        "@hf/thebloke/codellama-7b-instruct-awq",
        "@hf/mistralai/mistral-7b-instruct-v0.2",
        "@cf/thebloke/discolm-german-7b-v1-awq",
        "@cf/meta/llama-2-7b-chat-int8",
        "@hf/thebloke/mistral-7b-instruct-v0.1-awq",
        "@hf/thebloke/openchat_3.5-awq",
        "@cf/qwen/qwen1.5-7b-chat-awq",
        "@hf/thebloke/llama-2-13b-chat-awq",
        "@hf/thebloke/openhermes-2.5-mistral-7b-awq",
        "@cf/tiiuae/falcon-7b-instruct",
        "@hf/nousresearch/hermes-2-pro-mistral-7b",
        "@cf/qwen/qwen1.5-1.8b-chat",
        "@cf/microsoft/phi-2",
        "@hf/google/gemma-7b-it",
        "@cf/qwen/qwen1.5-14b-chat-awq",
        "@cf/openchat/openchat-3.5-0106",
        "@cf/google/gemma-2b-it-lora",
        "@cf/google/gemma-7b-it-lora",
    ]
    
  • Summarizing the generated output was done by @cf/facebook/bart-large-cnn

  • Translating the output was done by @cf/meta/m2m100-1.2b

  • Generating Sentiments from the news articles was done by @cf/huggingface/distilbert-sst-2-int8

  • Converting the voice input to text for ticker search was done by @cf/openai/whisper

Top comments (0)