Constraints
- 3 <= nums.length <= 3000
- -105 <= nums[i] <= 105
Idea #1 (Time: O(N), Memory: O(N))
- sort nums
- iterate if len(nums) > 2
- check duplicate
- left, right setup
- while left < right
- check if 3sum < 0: left++, >0: right--
- 3sum == 0: append 3 elem @ res and check duplicate both left and right, left++, right--
- if done return res, if not go to 2
Test Cases
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Code
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
res = list()
nums.sort()
for i in range(len(nums) - 2):
if i > 0 and nums[i] == nums[i-1]:
continue
left, right = i + 1, len(nums) - 1
while left < right:
sum = nums[i] + nums[left] + nums[right]
if sum < 0:
left += 1
elif sum > 0:
right -= 1
else:
res.append([nums[i], nums[left], nums[right]])
while left < right and nums[left] == nums[left + 1]:
left += 1
while left < right and nums[right] == nums[right -1]:
right -= 1
left += 1
right -= 1
return res
Top comments (0)