DEV Community

bredmond1019
bredmond1019

Posted on

Multi-Agent Orchestration: Running 10+ Claude Instances in Parallel (Part 3)

Last Tuesday at 3 AM, I watched 12 Claude agents rebuild my entire frontend while I slept. One agent refactored components, another wrote tests, a third updated documentation, and a fourth optimized performance.

By morning, I had a pull request with 10,000+ lines of perfectly coordinated changes.

This isn't science fiction. This is multi-agent orchestration with Claude Code, and it's changing how we build software at scale.

The Multi-Agent Revolution

In Parts 1 and 2, we explored Claude's capabilities and hook system. Now, let's tackle the ultimate productivity multiplier: running multiple Claude instances in parallel.

But first, a warning: This is where things get complex. Multiple agents mean:

  • Resource contention
  • File conflicts
  • Coordination challenges
  • Observability nightmares

Get it wrong, and you'll have chaos. Get it right, and you'll achieve superhuman productivity.

The Architecture That Makes It Possible

Here's the system architecture I use for multi-agent orchestration:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚            Orchestrator (Meta-Agent)         β”‚
β”‚         Decides what needs to be done        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                   β”‚ Creates tasks
                   β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              Task Queue (Redis)              β”‚
β”‚         Stores and distributes work          β”‚
β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
      β”‚       β”‚       β”‚       β”‚
      β–Ό       β–Ό       β–Ό       β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Agent 1 β”‚ β”‚ Agent 2 β”‚ β”‚ Agent 3 β”‚ β”‚ Agent N β”‚
β”‚Frontend β”‚ β”‚ Backend β”‚ β”‚  Tests  β”‚ β”‚  Docs   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
      β”‚       β”‚       β”‚       β”‚
      β””β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜
                   β”‚
                   β–Ό
        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
        β”‚  Observability   β”‚
        β”‚    Dashboard     β”‚
        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
Enter fullscreen mode Exit fullscreen mode

Step 1: The Meta-Agent Orchestrator

The meta-agent is Claude running in a special mode where it doesn't write code - it manages other agents:

# orchestrator.py
import json
import redis
import subprocess
from typing import List, Dict

class MetaAgent:
    def __init__(self):
        self.redis = redis.Redis(host='localhost', port=6379, db=0)
        self.task_queue = 'claude_tasks'

    def analyze_project(self, requirements: str) -> List[Dict]:
        """Use Claude to break down requirements into parallel tasks"""

        prompt = f"""
        Analyze these requirements and break them into independent tasks
        that can be executed in parallel by specialized agents:

        {requirements}

        Return a JSON array of tasks with:
        - id: unique identifier
        - type: frontend|backend|testing|docs|refactor
        - description: what needs to be done
        - dependencies: array of task IDs that must complete first
        - files: array of files this task will modify
        """

        # Call Claude API
        response = self.call_claude(prompt)
        return json.loads(response)

    def distribute_tasks(self, tasks: List[Dict]):
        """Queue tasks for worker agents"""

        # Sort by dependencies
        sorted_tasks = self.topological_sort(tasks)

        for task in sorted_tasks:
            # Check dependencies
            if self.dependencies_complete(task):
                self.redis.lpush(self.task_queue, json.dumps(task))
            else:
                # Queue for later
                self.redis.lpush(f"{self.task_queue}:pending", json.dumps(task))

    def spawn_worker_agents(self, count: int):
        """Launch Claude worker agents"""

        for i in range(count):
            subprocess.Popen([
                'claude-code',
                '--mode', 'worker',
                '--id', f'agent-{i}',
                '--config', 'worker-config.json'
            ])
Enter fullscreen mode Exit fullscreen mode

Step 2: Specialized Worker Agents

Each worker agent has a specific role and configuration:

# worker_agent.py
import os
import json
import redis
import time

class WorkerAgent:
    def __init__(self, agent_id: str, specialization: str):
        self.id = agent_id
        self.specialization = specialization
        self.redis = redis.Redis(host='localhost', port=6379, db=0)

    def run(self):
        """Main worker loop"""

        while True:
            # Get task from queue
            task_data = self.redis.brpop('claude_tasks', timeout=5)

            if task_data:
                task = json.loads(task_data[1])

                # Check if this agent can handle the task
                if self.can_handle(task):
                    self.execute_task(task)
                else:
                    # Put it back for another agent
                    self.redis.lpush('claude_tasks', task_data[1])
                    time.sleep(1)

    def execute_task(self, task: Dict):
        """Execute a task with Claude"""

        # Acquire file locks
        locked_files = self.acquire_locks(task['files'])

        try:
            # Set up Claude context
            prompt = self.build_prompt(task)

            # Execute with Claude
            os.environ['CLAUDE_SESSION_ID'] = f"{self.id}-{task['id']}"
            result = self.run_claude(prompt)

            # Report completion
            self.redis.hset(f"task:{task['id']}", 'status', 'complete')
            self.redis.hset(f"task:{task['id']}", 'result', result)

            # Trigger dependent tasks
            self.trigger_dependencies(task['id'])

        finally:
            # Release locks
            self.release_locks(locked_files)

    def acquire_locks(self, files: List[str]) -> List[str]:
        """Acquire exclusive locks on files"""

        locked = []
        for file_path in files:
            lock_key = f"lock:{file_path}"

            # Try to acquire lock with timeout
            if self.redis.set(lock_key, self.id, nx=True, ex=300):
                locked.append(file_path)
            else:
                # Couldn't get lock, release all and retry
                self.release_locks(locked)
                time.sleep(2)
                return self.acquire_locks(files)

        return locked
Enter fullscreen mode Exit fullscreen mode

Step 3: Real-Time Observability

With multiple agents running, observability becomes critical. Here's my monitoring dashboard:

<!DOCTYPE html>
<html>
<head>
    <title>Claude Multi-Agent Command Center</title>
    <script src="https://cdn.jsdelivr.net/npm/vue@3"></script>
    <style>
        .agent-grid {
            display: grid;
            grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
            gap: 20px;
            padding: 20px;
        }
        .agent-card {
            border: 2px solid #3498db;
            border-radius: 8px;
            padding: 15px;
            position: relative;
        }
        .agent-card.active {
            border-color: #2ecc71;
            box-shadow: 0 0 10px rgba(46, 204, 113, 0.3);
        }
        .agent-status {
            position: absolute;
            top: 10px;
            right: 10px;
            width: 12px;
            height: 12px;
            border-radius: 50%;
            background: #95a5a6;
        }
        .agent-status.active { background: #2ecc71; }
        .agent-status.busy { background: #f39c12; }
        .agent-status.error { background: #e74c3c; }

        .task-progress {
            margin-top: 10px;
            height: 20px;
            background: #ecf0f1;
            border-radius: 10px;
            overflow: hidden;
        }
        .task-progress-bar {
            height: 100%;
            background: linear-gradient(90deg, #3498db, #2ecc71);
            transition: width 0.3s;
        }

        .conflict-alert {
            background: #e74c3c;
            color: white;
            padding: 10px;
            border-radius: 5px;
            margin: 10px;
        }
    </style>
</head>
<body>
    <div id="app">
        <h1>Claude Multi-Agent Command Center</h1>

        <!-- Overall Stats -->
        <div class="stats">
            <h2>Mission Status</h2>
            <p>Active Agents: {{ activeAgents.length }}</p>
            <p>Tasks Completed: {{ completedTasks }} / {{ totalTasks }}</p>
            <p>Files Modified: {{ modifiedFiles.size }}</p>
            <p>Conflicts Detected: {{ conflicts.length }}</p>
        </div>

        <!-- Conflict Alerts -->
        <div v-if="conflicts.length > 0" class="conflict-alert">
            ⚠️ File Conflicts Detected:
            <ul>
                <li v-for="conflict in conflicts" :key="conflict.file">
                    {{ conflict.file }} - {{ conflict.agents.join(' vs ') }}
                </li>
            </ul>
        </div>

        <!-- Agent Grid -->
        <div class="agent-grid">
            <div v-for="agent in agents" 
                 :key="agent.id" 
                 :class="['agent-card', { active: agent.status === 'active' }]">

                <div :class="['agent-status', agent.status]"></div>

                <h3>{{ agent.id }}</h3>
                <p>Type: {{ agent.specialization }}</p>
                <p>Current Task: {{ agent.currentTask || 'Idle' }}</p>

                <div v-if="agent.currentTask" class="task-progress">
                    <div class="task-progress-bar" 
                         :style="{ width: agent.progress + '%' }"></div>
                </div>

                <p>Files: {{ agent.workingFiles.join(', ') || 'None' }}</p>
                <p>Tasks Completed: {{ agent.completedCount }}</p>
            </div>
        </div>

        <!-- Activity Stream -->
        <div class="activity-stream">
            <h2>Live Activity</h2>
            <div v-for="event in recentEvents" :key="event.id" class="event">
                <span class="timestamp">{{ formatTime(event.timestamp) }}</span>
                <span class="agent">{{ event.agentId }}:</span>
                <span class="action">{{ event.action }}</span>
            </div>
        </div>
    </div>

    <script>
        const { createApp } = Vue;

        createApp({
            data() {
                return {
                    agents: [],
                    conflicts: [],
                    recentEvents: [],
                    totalTasks: 0,
                    completedTasks: 0,
                    modifiedFiles: new Set(),
                    ws: null
                };
            },

            computed: {
                activeAgents() {
                    return this.agents.filter(a => a.status === 'active');
                }
            },

            methods: {
                connect() {
                    this.ws = new WebSocket('ws://localhost:3001/agents');

                    this.ws.onmessage = (event) => {
                        const data = JSON.parse(event.data);

                        switch(data.type) {
                            case 'agent_update':
                                this.updateAgent(data.agent);
                                break;
                            case 'conflict':
                                this.conflicts.push(data.conflict);
                                break;
                            case 'task_complete':
                                this.completedTasks++;
                                break;
                            case 'event':
                                this.recentEvents.unshift(data.event);
                                this.recentEvents = this.recentEvents.slice(0, 50);
                                break;
                        }
                    };
                },

                updateAgent(agentData) {
                    const index = this.agents.findIndex(a => a.id === agentData.id);
                    if (index >= 0) {
                        this.agents[index] = agentData;
                    } else {
                        this.agents.push(agentData);
                    }

                    // Track modified files
                    if (agentData.workingFiles) {
                        agentData.workingFiles.forEach(f => this.modifiedFiles.add(f));
                    }
                },

                formatTime(timestamp) {
                    return new Date(timestamp).toLocaleTimeString();
                }
            },

            mounted() {
                this.connect();
            }
        }).mount('#app');
    </script>
</body>
</html>
Enter fullscreen mode Exit fullscreen mode

Real-World Example: The Frontend Refactor

Last week, I needed to refactor my entire component library from class components to functional components with hooks. Here's how multi-agent orchestration handled it:

The Meta-Agent's Plan:

[
  {
    "id": "analyze-1",
    "type": "analysis",
    "description": "Scan all components and create refactoring plan",
    "dependencies": [],
    "files": []
  },
  {
    "id": "refactor-buttons",
    "type": "frontend",
    "description": "Convert all Button components to functional",
    "dependencies": ["analyze-1"],
    "files": ["components/Button/*.tsx"]
  },
  {
    "id": "refactor-forms",
    "type": "frontend", 
    "description": "Convert all Form components to functional",
    "dependencies": ["analyze-1"],
    "files": ["components/Form/*.tsx"]
  },
  {
    "id": "update-tests-buttons",
    "type": "testing",
    "description": "Update Button component tests",
    "dependencies": ["refactor-buttons"],
    "files": ["__tests__/Button/*.test.tsx"]
  },
  {
    "id": "update-tests-forms",
    "type": "testing",
    "description": "Update Form component tests",
    "dependencies": ["refactor-forms"],
    "files": ["__tests__/Form/*.test.tsx"]
  },
  {
    "id": "update-docs",
    "type": "docs",
    "description": "Update component documentation",
    "dependencies": ["refactor-buttons", "refactor-forms"],
    "files": ["docs/components/*.md"]
  }
]
Enter fullscreen mode Exit fullscreen mode

The Execution:

  • Agent-1 and Agent-2 worked on different component folders in parallel
  • Agent-3 and Agent-4 updated tests as components were completed
  • Agent-5 regenerated documentation after all refactoring was done
  • Agent-6 ran performance benchmarks on the new components

Total time: 2 hours (vs estimated 2 days manual work)
Lines changed: 12,000+
Tests passing: 100%
Conflicts: 0

Handling the Complexity

Challenge 1: Resource Management

Running 10+ Claude instances will max out your system. Here's my resource manager:

# resource_manager.py
import psutil
import docker

class ResourceManager:
    def __init__(self, max_agents=10):
        self.max_agents = max_agents
        self.docker = docker.from_env()

    def can_spawn_agent(self) -> bool:
        # Check CPU usage
        if psutil.cpu_percent(interval=1) > 80:
            return False

        # Check memory
        if psutil.virtual_memory().percent > 85:
            return False

        # Check active containers
        active = len([c for c in self.docker.containers.list() 
                     if 'claude-agent' in c.name])

        return active < self.max_agents

    def spawn_agent_container(self, agent_config):
        """Spawn agent in Docker container for isolation"""

        container = self.docker.containers.run(
            'claude-agent:latest',
            environment=agent_config,
            detach=True,
            name=f"claude-agent-{agent_config['id']}",
            volumes={
                '/project': {'bind': '/workspace', 'mode': 'rw'}
            },
            cpu_quota=50000,  # Limit CPU usage
            mem_limit='2g'     # Limit memory
        )

        return container
Enter fullscreen mode Exit fullscreen mode

Challenge 2: Coordination Without Conflicts

The key is smart task distribution and file locking:

# conflict_prevention.py
class ConflictPrevention:
    def __init__(self):
        self.file_graph = self.build_dependency_graph()

    def build_dependency_graph(self):
        """Map file dependencies to prevent conflicts"""

        # Analyze imports and exports
        graph = {}
        for file in glob.glob('**/*.ts', recursive=True):
            imports = self.extract_imports(file)
            graph[file] = imports

        return graph

    def can_modify_simultaneously(self, file1: str, file2: str) -> bool:
        """Check if two files can be modified in parallel"""

        # Check if files import each other
        if file2 in self.file_graph.get(file1, []):
            return False
        if file1 in self.file_graph.get(file2, []):
            return False

        # Check if they share common dependencies
        deps1 = set(self.file_graph.get(file1, []))
        deps2 = set(self.file_graph.get(file2, []))

        shared = deps1.intersection(deps2)

        # Allow if no shared critical dependencies
        return len(shared) == 0 or all(
            not self.is_critical(dep) for dep in shared
        )
Enter fullscreen mode Exit fullscreen mode

Challenge 3: Quality Control

With multiple agents, quality control becomes critical:

# quality_gate.py
class QualityGate:
    def __init__(self):
        self.checks = [
            self.check_tests_pass,
            self.check_type_safety,
            self.check_no_conflicts,
            self.check_performance,
            self.check_security
        ]

    def validate_agent_work(self, agent_id: str, changes: Dict):
        """Validate agent's changes before merging"""

        results = []
        for check in self.checks:
            result = check(changes)
            results.append(result)

            if not result['passed']:
                # Revert changes and reassign task
                self.revert_changes(changes)
                self.reassign_task(agent_id, result['reason'])
                return False

        return True

    def check_tests_pass(self, changes):
        """Run tests on changed files"""

        affected_tests = self.find_affected_tests(changes['files'])

        result = subprocess.run(
            ['npm', 'test'] + affected_tests,
            capture_output=True
        )

        return {
            'passed': result.returncode == 0,
            'reason': result.stderr.decode() if result.returncode != 0 else None
        }
Enter fullscreen mode Exit fullscreen mode

The Economics of Multi-Agent Development

Let's talk ROI. Running 10 Claude agents costs approximately:

  • API costs: ~$50/day at heavy usage
  • Infrastructure: ~$20/day for cloud resources

But the productivity gains:

  • 10x faster development on parallelizable tasks
  • 24/7 operation (agents don't sleep)
  • Consistent quality (no fatigue)
  • Comprehensive testing (every change, every time)

For a team of 5 developers, this replaces roughly $50,000/month in engineering time for $2,000/month in compute costs.

Getting Started with Multi-Agent

Start small:

  1. Two agents: One for code, one for tests
  2. Add observability: You need to see what's happening
  3. Implement safety: File locks and conflict detection
  4. Scale gradually: Add agents as you understand the patterns

The Future is Distributed

We're entering an era where a single developer can orchestrate an entire team of AI agents. The bottleneck isn't coding speed anymore - it's our ability to coordinate and direct these agents effectively.

Next week, I'm experimenting with 50+ agents working on a complete application rewrite. The meta-agent will manage sub-orchestrators, each controlling their own team of specialized agents.

It's turtles all the way down, and it's beautiful.


πŸš€ Take Your AI Engineering to the Next Level

🌐 Visit learn-agentic-ai.com - Your Hub for Advanced AI Development

πŸŽ“ Complete Learning Paths:

πŸ“š Essential Reading for Multi-Agent Systems:

πŸ’‘ Business & ROI Resources:

πŸ› οΈ Tools & Templates:

About the Author:
I'm Brandon J. Redmond, AI Engineer & Agentic Systems Architect. I've built and deployed multi-agent systems processing millions of requests. Let's connect on LinkedIn or explore more at learn-agentic-ai.com.


Have you experimented with multiple AI agents? What challenges did you face? Let's discuss in the comments!

Previous Articles in This Series:

Ready to build your own agent swarm? Start with the Claude Code Mastery learning path - from zero to orchestrating multiple agents in 7 comprehensive modules.

Top comments (0)