DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

1

ElasticTransform in PyTorch (4)

Buy Me a Coffee

*Memos:

ElasticTransform() can do random morphological transformation for an image as shown below. *It's about alpha and sigma argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import ElasticTransform
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

a0s01_data = OxfordIIITPet( # `a` is alpha and `s` is sigma.
    root="data",
    transform=ElasticTransform(alpha=0, sigma=0.1)
    # transform=ElasticTransform(alpha=[0, 0], sigma=[0.1, 0.1])
)

a0s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=0, sigma=1)
)

a0s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=0, sigma=10)
)

a0s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=0, sigma=40)
)

a10s01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10, sigma=0.1)
    # transform=ElasticTransform(alpha=-10, sigma=0.1)
)

a10s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10, sigma=1)
)

a10s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10, sigma=10)
)

a10s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10, sigma=40)
)

a100s01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=100, sigma=0.1)
    # transform=ElasticTransform(alpha=-100, sigma=0.1)
)

a100s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=100, sigma=1)
)

a100s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=100, sigma=10)
)

a100s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=100, sigma=40)
)

a1000s01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=1000, sigma=0.1)
    # transform=ElasticTransform(alpha=-1000, sigma=0.1)
)

a1000s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=1000, sigma=1)
)

a1000s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=1000, sigma=10)
)

a1000s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=1000, sigma=40)
)

a10000s01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10000, sigma=0.1)
    # transform=ElasticTransform(alpha=-10000, sigma=0.1)
)

a10000s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10000, sigma=1)
)

a10000s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10000, sigma=10)
)

a10000s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10000, sigma=40)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=a0s01_data, main_title="a0s01_data")
show_images1(data=a0s1_data, main_title="a0s1_data")
show_images1(data=a0s10_data, main_title="a0s10_data")
show_images1(data=a0s40_data, main_title="a0s40_data")
print()
show_images1(data=a10s01_data, main_title="a10s01_data")
show_images1(data=a10s1_data, main_title="a10s1_data")
show_images1(data=a10s10_data, main_title="a10s10_data")
show_images1(data=a10s40_data, main_title="a10s40_data")
print()
show_images1(data=a100s01_data, main_title="a100s01_data")
show_images1(data=a100s1_data, main_title="a100s1_data")
show_images1(data=a100s10_data, main_title="a100s10_data")
show_images1(data=a100s40_data, main_title="a100s40_data")
print()
show_images1(data=a1000s01_data, main_title="a1000s01_data")
show_images1(data=a1000s1_data, main_title="a1000s1_data")
show_images1(data=a1000s10_data, main_title="a1000s10_data")
show_images1(data=a1000s40_data, main_title="a1000s40_data")
print()
show_images1(data=a10000s01_data, main_title="a10000s01_data")
show_images1(data=a10000s1_data, main_title="a10000s1_data")
show_images1(data=a10000s10_data, main_title="a10000s10_data")
show_images1(data=a10000s40_data, main_title="a10000s40_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, a=50, s=5, 
                 ip=InterpolationMode.BILINEAR, f=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            et = ElasticTransform(alpha=a, sigma=s,
                                  interpolation=ip, fill=f)
            plt.imshow(X=et(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="a0s01_data", a=0, s=0.1)
show_images2(data=origin_data, main_title="a0s1_data", a=0, s=1)
show_images2(data=origin_data, main_title="a0s10_data", a=0, s=10)
show_images2(data=origin_data, main_title="a0s40_data", a=0, s=40)
print()
show_images2(data=origin_data, main_title="a10s01_data", a=10, s=0.1)
show_images2(data=origin_data, main_title="a10s1_data", a=10, s=1)
show_images2(data=origin_data, main_title="a10s10_data", a=10, s=10)
show_images2(data=origin_data, main_title="a10s40_data", a=10, s=40)
print()
show_images2(data=origin_data, main_title="a100s01_data", a=100, s=0.1)
show_images2(data=origin_data, main_title="a100s1_data", a=100, s=1)
show_images2(data=origin_data, main_title="a100s10_data", a=100, s=10)
show_images2(data=origin_data, main_title="a100s40_data", a=100, s=40)
print()
show_images2(data=origin_data, main_title="a1000s01_data", a=1000, s=0.1)
show_images2(data=origin_data, main_title="a1000s1_data", a=1000, s=1)
show_images2(data=origin_data, main_title="a1000s10_data", a=1000, s=10)
show_images2(data=origin_data, main_title="a1000s40_data", a=1000, s=40)
print()
show_images2(data=origin_data, main_title="a10000s01_data", a=10000, s=0.1)
show_images2(data=origin_data, main_title="a10000s1_data", a=10000, s=1)
show_images2(data=origin_data, main_title="a10000s10_data", a=10000, s=10)
show_images2(data=origin_data, main_title="a10000s40_data", a=10000, s=40)
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Heroku

Built for developers, by developers.

Whether you're building a simple prototype or a business-critical product, Heroku's fully-managed platform gives you the simplest path to delivering apps quickly — using the tools and languages you already love!

Learn More

Top comments (0)

👋 Kindness is contagious

DEV shines when you're signed in, unlocking a customized experience with features like dark mode!

Okay