DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Updated on

PReLU and ELU in PyTorch

Buy Me a Coffee

*Memos:

PReLU() can get the 1D or more D tensor of the zero or more values computed by PReLU function from the 1D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is num_parameters(Optional-Default:1-Type:int): *Memos:
    • It's the number of learnable parameters.
    • It must be 1 <= x.
  • The 2nd argument for initialization is init(Optional-Default:0.25-Type:float). *It's the initial value for learnable parameters.
  • The 3rd argument is device(Optional-Default:None-Type:str, int or device()): *Memos:
  • The 4th argument is dtype(Optional-Default:None-Type:dtype): *Memos:
  • The 1st argument is input(Required-Type:tensor of float).
  • You can also use prelu() with a tensor.

Image description



import torch
from torch import nn

my_tensor = torch.tensor([8., -3., 0., 1., 5., -2., -1., 4.])

prelu = nn.PReLU()
prelu(input=my_tensor)
# tensor([8.0000, -0.7500, 0.0000, 1.0000,
#         5.0000, -0.5000, -0.2500, 4.0000],
#        grad_fn=<PreluKernelBackward0>)

my_tensor.prelu(weight=torch.tensor(0.25))
# tensor([8.0000, -0.7500, 0.0000, 1.0000,
#         5.0000, -0.5000, -0.2500, 4.0000])

prelu
# PReLU(num_parameters=1)

prelu.num_parameters
# 1

prelu.init
# 0.25

prelu.weight
# Parameter containing:
# tensor([0.2500], requires_grad=True)

prelu = nn.PReLU(num_parameters=1, init=0.25)
prelu(input=my_tensor)
# tensor([8.0000, -0.7500, 0.0000, 1.0000,
#         5.0000, -0.5000, -0.2500, 4.0000],
#        grad_fn=<PreluKernelBackward0>)

prelu.weight
# Parameter containing:
# tensor([0.2500], requires_grad=True)

my_tensor = torch.tensor([[8., -3., 0., 1.],
                          [5., -2., -1., 4.]])
prelu = nn.PReLU()
prelu(input=my_tensor)
# tensor([[8.0000, -0.7500, 0.0000, 1.0000],
#         [5.0000, -0.5000, -0.2500, 4.0000]],
#        grad_fn=<PreluKernelBackward0>)

prelu.weight
# Parameter containing:
# tensor([0.2500], requires_grad=True)

prelu = nn.PReLU(num_parameters=4, init=0.25, device=None, dtype=None)
prelu(input=my_tensor)
# tensor([[8.0000, -0.7500, 0.0000, 1.0000],
#         [5.0000, -0.5000, -0.2500, 4.0000]],
#        grad_fn=<PreluKernelBackward0>)

prelu.weight
# Parameter containing:
# tensor([0.2500, 0.2500, 0.2500, 0.2500], requires_grad=True)

my_tensor = torch.tensor([[[8., -3.], [0., 1.]],
                          [[5., -2.], [-1., 4.]]])
prelu = nn.PReLU()
prelu(input=my_tensor)
# tensor([[[8.0000, -0.7500], [0.0000, 1.0000]],
#         [[5.0000, -0.5000], [-0.2500, 4.0000]]],
#        grad_fn=<PreluKernelBackward0>)

prelu.weight
# Parameter containing:
# tensor([0.2500], requires_grad=True)

prelu = nn.PReLU(num_parameters=2, init=0.25)
prelu(input=my_tensor)
# tensor([[[8.0000, -0.7500], [0.0000, 1.0000]],
#         [[5.0000, -0.5000], [-0.2500, 4.0000]]],
#        grad_fn=<PreluKernelBackward0>)

prelu.weight
# Parameter containing:
# tensor([0.2500, 0.2500], requires_grad=True)


Enter fullscreen mode Exit fullscreen mode

ELU() can get the 0D or more D tensor of the zero or more values computed by ELU function from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is alpha(Optional-Default:1.0-Type:float). *It's applied to negative input values.
  • The 2nd argument for initialization is inplace(Optional-Default:False-Type:bool): *Memos:
    • It does in-place operation.
    • Keep it False because it's problematic with True.
  • The 1st argument is input(Required-Type:tensor of float).

Image description



import torch
from torch import nn

my_tensor = torch.tensor([8., -3., 0., 1., 5., -2., -1., 4.])

elu = nn.ELU()
elu(input=my_tensor)
# tensor([8.0000, -0.9502, 0.0000, 1.0000, 5.0000, -0.8647, -0.6321, 4.0000])

elu
# ELU(alpha=1.0)

elu.alpha
# 1.0

elu.inplace
# False

elu = nn.ELU(alpha=1.0, inplace=True)
elu(input=my_tensor)
# tensor([8.0000, -0.9502, 0.0000, 1.0000, 5.0000, -0.8647, -0.6321, 4.0000])

my_tensor = torch.tensor([[8., -3., 0., 1.],
                          [5., -2., -1., 4.]])
elu = nn.ELU()
elu(input=my_tensor)
# tensor([[8.0000, -0.9502, 0.0000, 1.0000],
#         [5.0000, -0.8647, -0.6321, 4.0000]])

my_tensor = torch.tensor([[[8., -3.], [0., 1.]],
                          [[5., -2.], [-1., 4.]]])
elu = nn.ELU()
elu(input=my_tensor)
# tensor([[[8.0000, -0.9502], [0.0000, 1.0000]],
#         [[5.0000, -0.8647], [-0.6321, 4.0000]]])


Enter fullscreen mode Exit fullscreen mode

Top comments (0)