DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Updated on

ReLU and LeakyReLU in PyTorch

Buy Me a Coffee

*Memos:

ReLU() can get the 0D or more D tensor of the zero or more values computed by ReLU function from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is inplace(Optional-Default:False-Type:bool): *Memos:
    • It does in-place operation.
    • Keep it False because it's problematic with True.
  • The 1st argument is input(Required-Type:tensor of int or float).
  • You can also use relu() with a tensor.

Image description

import torch
from torch import nn

my_tensor = torch.tensor([8, -3, 0, 1, 5, -2, -1, 4])

relu = nn.ReLU()
relu(input=my_tensor)
my_tensor.relu()
# tensor([8, 0, 0, 1, 5, 0, 0, 4])

relu
# ReLU()

relu.inplace
# False

relu = nn.ReLU(inplace=True)
relu(input=my_tensor)
# tensor([8, 0, 0, 1, 5, 0, 0, 4])

my_tensor = torch.tensor([[8, -3, 0, 1],
                          [5, 0, -1, 4]])
relu = nn.ReLU()
relu(input=my_tensor)
# tensor([[8, 0, 0, 1],
#         [5, 0, 0, 4]])

my_tensor = torch.tensor([[[8, -3], [0, 1]],
                          [[5, 0], [-1, 4]]])
relu = nn.ReLU()
relu(input=my_tensor)
# tensor([[[8, 0], [0, 1]],
#         [[5, 0], [0, 4]]])

my_tensor = torch.tensor([[[8., -3.], [0., 1.]],
                          [[5., 0.], [-1., 4.]]])
relu = nn.ReLU()
relu(input=my_tensor)
# tensor([[[8., 0.], [0., 1.]],
#         [[5., 0.], [0., 4.]]])
Enter fullscreen mode Exit fullscreen mode

LeakyReLU() can get the 0D or more D tensor of the zero or more values computed by LeakyReLU function from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is negative_slope(Optional-Default:0.01-Type:float). *It's applied to negative input values.
  • The 2nd argument for initialization is inplace(Optional-Default:False-Type:bool): *Memos:
    • It does in-place operation.
    • Keep it False because it's problematic with True.
  • The 1st argument is input(Required-Type:tensor of float).

Image description

import torch
from torch import nn

my_tensor = torch.tensor([8., -3., 0., 1., 5., -2., -1., 4.])

lrelu = nn.LeakyReLU()
lrelu(input=my_tensor)
# tensor([8.0000, -0.0300, 0.0000, 1.0000, 5.0000, -0.0200, -0.0100, 4.0000])

lrelu
# LeakyReLU(negative_slope=0.01)

lrelu.negative_slope
# 0.01

lrelu.inplace
# False

lrelu = nn.LeakyReLU(negative_slope=0.01, inplace=True)
lrelu(input=my_tensor)
# tensor([8.0000, -0.0300, 0.0000, 1.0000, 5.0000, -0.0200, -0.0100, 4.0000])

my_tensor = torch.tensor([[8., -3., 0., 1.],
                          [5., -2., -1., 4.]])
lrelu = nn.LeakyReLU()
lrelu(input=my_tensor)
# tensor([[8.0000, -0.0300, 0.0000, 1.0000],
#         [5.0000, -0.0200, -0.0100, 4.0000]])

my_tensor = torch.tensor([[[8., -3.], [0., 1.]],
                          [[5., -2.], [-1., 4.]]])
lrelu = nn.LeakyReLU()
lrelu(input=my_tensor)
# tensor([[[8.0000, -0.0300], [0.0000, 1.0000]],
#         [[5.0000, -0.0200], [-0.0100, 4.0000]]])
Enter fullscreen mode Exit fullscreen mode

Top comments (0)