Very often, you need to do something to groups of rows of a dataframe that match some condition, for instance a certain mouse or brain region. The most intuitive solution is to use a for loop.
For instance, let's start with this dataframe:
experiment | brain_region | neuron | Mean ISI | |
---|---|---|---|---|
0 | bucket_1_m026_1568757659_ | pfc | 0 | 3.08281 |
1 | bucket_1_m026_1568757659_ | pfc | 1 | 8.37044 |
2 | bucket_1_m026_1568757659_ | pfc | 2 | 38.5265 |
3 | bucket_1_m026_1568757659_ | pfc | 3 | 31.795 |
4 | bucket_1_m026_1568757659_ | pfc | 4 | 3.43186 |
We can loop over experiments, brain regions, and neuron like so:
log_mean_isi = []
for neuron in df['neuron'].unique():
for brain_region in df['brain_region'].unique():
for experiment in df['experiment'].unique():
sub_df=df[
(df['experiment']==experiment) &
(df['brain_region']==brain_region) &
(df['neuron']==neuron)
]
log_mean_isi.append(np.log(sub_df['Mean ISI']).values)
print(np.hstack(log_mean_isi))
[ 1.12584188 2.19215951 -1.98074317 -0.25722232 2.1247061 0.0063244 0.92415014 -1.93038317 3.6513468 2.28266164 1.39365976 -3.23681353 3.459308 1.48402753 -0.65003803 1.4140086 1.23310109 -0.8740564 1.29957486 -0.60594385 -0.61921541 4.51176028 0.5622578 3.48668087 -1.57394565 -1.15482997 3.62078013 -0.64878302 -2.08398518 0.28354575 -0.92326873 -2.23523802 -1.15944804 -1.16315081 1.29454247 -0.89566237 0.72300259 -1.38527266 1.3694298 2.95919545 3.07555102 -1.38317331 2.3510588 -1.68488011 2.15864159 2.92067342 0.20249933 1.76685816 -1.14606501 -2.54545905 2.17651238 2.49333615 -1.08762839 -1.10690211 1.79675315 1.08438564 -1.61687289 3.64009558 2.50376142 3.53577889 -2.31447026 -0.9560716 ...]
However, nested for loops are evil for many reasons. Let's use the groupby
command:
log_mean_isi=[]
for index, sub_df in df.groupby(['neuron', 'brain_region', 'experiment']):
log_mean_isi.append(np.log(sub_df['Mean ISI']).values)
print(np.hstack(log_mean_isi))
or even in one line:
mean_isi_list=[np.log(sub_df['Mean ISI']).values for index, sub_df in df.groupby(['neuron', 'brain_region', 'experiment'])]
print(np.hstack(mean_isi_list))
Much more readable and efficient! Furthermore, the index
part can be used for reconstructing the modified dataframe. I might make a post on that in the future.
Top comments (0)