DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Updated on

Sigmoid and Softmax in PyTorch

Buy Me a Coffee

*Memos:

Sigmoid() can get the 0D or more D tensor of the zero or more values computed by Sigmoid function from the 0D or more D tensor of zero or more elements as shown below:
*Memos:

  • The 1st argument is input(Required-Type:tensor of int, float, complex or bool). *A float tensor is returned except for a complex input tensor.
  • You can also use torch.sigmoid() which is the alias of torch.special.expit().

Image description

import torch
from torch import nn

my_tensor = torch.tensor([8., -3., 0., 1., 5., -2., -1., 4.])

sigmoid = nn.Sigmoid()
sigmoid(input=my_tensor)
# tensor([0.9997, 0.0474, 0.5000, 0.7311, 0.9933, 0.1192, 0.2689, 0.9820])

sigmoid
# Sigmoid()

my_tensor = torch.tensor([[8., -3., 0., 1.],
                          [5., -2., -1., 4.]])
sigmoid = nn.Sigmoid()
sigmoid(input=my_tensor)
# tensor([[0.9997, 0.0474, 0.5000, 0.7311],
#         [0.9933, 0.1192, 0.2689, 0.9820]])

my_tensor = torch.tensor([[[8., -3.], [0., 1.]],
                          [[5., -2.], [-1., 4.]]])
sigmoid = nn.Sigmoid()
sigmoid(input=my_tensor)
# tensor([[[0.9997, 0.0474], [0.5000, 0.7311]],
#         [[0.9933, 0.1192], [0.2689, 0.9820]]])

my_tensor = torch.tensor([[[8, -3], [0, 1]],
                          [[5, -2], [-1, 4]]])
sigmoid = nn.Sigmoid()
sigmoid(input=my_tensor)
# tensor([[[0.9997, 0.0474], [0.5000, 0.7311]],
#         [[0.9933, 0.1192], [0.2689, 0.9820]]])

my_tensor = torch.tensor([[[8.+0.j, -3.+0.j], [0.+0.j, 1.+0.j]],
                          [[5.+0.j, -2.+0.j], [-1.+0.j, 4.+0.j]]])
sigmoid = nn.Sigmoid()
sigmoid(input=my_tensor)
# tensor([[[0.9997-0.j, 0.0474-0.j], [0.5000-0.j, 0.7311-0.j]],
#         [[0.9933-0.j, 0.1192-0.j], [0.2689-0.j, 0.9820-0.j]]])

my_tensor = torch.tensor([[[True, False], [True, False]],
                          [[False, True], [False, True]]])
sigmoid = nn.Sigmoid()
sigmoid(input=my_tensor)
# tensor([[[0.7311, 0.5000], [0.7311, 0.5000]],
#         [[0.5000, 0.7311], [0.5000, 0.7311]]])
Enter fullscreen mode Exit fullscreen mode

Softmax() can get the 0D or more D tensor of the zero or more values computed by Softmax function from the 0D or more D tensor of zero or more elements as shown below:
*Memos:

  • The 1st argument for initialization is dim(Required-Type:float). *Unsetting it works but there is a warning and the way is deprecated.
  • The 1st argument is input(Required-Type:tensor of float).
  • You can also use torch.nn.functional.softmax() with a tensor.

Image description

import torch
from torch import nn

my_tensor = torch.tensor([8., -3., 0., 1., 5., -2., -1., 4.])

softmax = nn.Softmax(dim=0)
softmax(input=my_tensor)
my_tensor.softmax(dim=0)
# tensor([9.3499e-01, 1.5616e-05, 3.1365e-04, 8.5260e-04,
#         4.6550e-02, 4.2448e-05,1.1539e-04, 1.7125e-02])

softmax
# Softmax(dim=0)

softmax.dim
# 0

softmax = nn.Softmax(dim=-1)
softmax(input=my_tensor)
# tensor([9.3499e-01, 1.5616e-05, 3.1365e-04, 8.5260e-04,
#         4.6550e-02, 4.2448e-05, 1.1539e-04, 1.7125e-02])

my_tensor = torch.tensor([[8., -3., 0., 1.],
                          [5., -2., -1., 4.]])
softmax = nn.Softmax(dim=0)
softmax(input=my_tensor)
# tensor([[0.9526, 0.2689, 0.7311, 0.0474],
#         [0.0474, 0.7311, 0.2689, 0.9526]])

softmax = nn.Softmax(dim=-2)
softmax(input=my_tensor)
# tensor([[0.9526, 0.2689, 0.7311, 0.0474],
#         [0.0474, 0.7311, 0.2689, 0.9526]])

softmax = nn.Softmax(dim=1)
softmax(input=my_tensor)
# tensor([[9.9874e-01, 1.6681e-05, 3.3504e-04, 9.1073e-04],
#         [7.2925e-01, 6.6499e-04, 1.8076e-03, 2.6828e-01]])

softmax = nn.Softmax(dim=-1)
softmax(input=my_tensor)
# tensor([[9.9874e-01, 1.6681e-05, 3.3504e-04, 9.1073e-04],
#         [7.2925e-01, 6.6499e-04, 1.8076e-03, 2.6828e-01]])

my_tensor = torch.tensor([[[8., -3.], [0., 1.]],
                          [[5., -2.], [-1., 4.]]])
softmax = nn.Softmax(dim=0)
softmax(input=my_tensor)
# tensor([[[0.9526, 0.2689], [0.7311, 0.0474]],
#         [[0.0474, 0.7311], [0.2689, 0.9526]]])

softmax = nn.Softmax(dim=-3)
softmax(input=my_tensor)
# tensor([[[0.9526, 0.2689], [0.7311, 0.0474]],
#         [[0.0474, 0.7311], [0.2689, 0.9526]]])

softmax = nn.Softmax(dim=1)
softmax(input=my_tensor)
# tensor([[[9.9966e-01, 1.7986e-02], [3.3535e-04, 9.8201e-01]],
#         [[9.9753e-01, 2.4726e-03], [2.4726e-03, 9.9753e-01]]])

softmax = nn.Softmax(dim=-2)
softmax(input=my_tensor)
# tensor([[[9.9966e-01, 1.7986e-02], [3.3535e-04, 9.8201e-01]],
#         [[9.9753e-01, 2.4726e-03], [2.4726e-03, 9.9753e-01]]])

softmax = nn.Softmax(dim=2)
softmax(input=my_tensor)
# tensor([[[9.9998e-01, 1.6701e-05], [2.6894e-01, 7.3106e-01]],
#         [[9.9909e-01, 9.1105e-04], [6.6929e-03, 9.9331e-01]]])

softmax = nn.Softmax(dim=-1)
softmax(input=my_tensor)
# tensor([[[9.9998e-01, 1.6701e-05], [2.6894e-01, 7.3106e-01]],
#         [[9.9909e-01, 9.1105e-04], [6.6929e-03, 9.9331e-01]]])
Enter fullscreen mode Exit fullscreen mode

Top comments (0)