Given n
orders, each order consist in pickup and delivery services.
Count all valid pickup/delivery possible sequences such that delivery(i) is always after of pickup(i).
Since the answer may be too large, return it modulo 10^9 + 7.
Example 1:
Input: n = 1
Output: 1
Explanation: Unique order (P1, D1), Delivery 1 always is after of Pickup 1.
Example 2:
Input: n = 2
Output: 6
Explanation: All possible orders:
(P1,P2,D1,D2), (P1,P2,D2,D1), (P1,D1,P2,D2), (P2,P1,D1,D2), (P2,P1,D2,D1) and (P2,D2,P1,D1).
This is an invalid order (P1,D2,P2,D1) because Pickup 2 is after of Delivery 2.
Example 3:
Input: n = 3
Output: 90
Constraints:
-
1 <= n <= 500
SOLUTION:
class Solution:
def countOrders(self, n: int) -> int:
if n == 1:
return 1
val = self.countOrders(n - 1) * n * (2 * n - 1)
return val % (10 ** 9 + 7)
Top comments (0)