You are given two non-increasing 0-indexed integer arrays nums1
and nums2
.
A pair of indices (i, j)
, where 0 <= i < nums1.length
and 0 <= j < nums2.length
, is valid if both i <= j
and nums1[i] <= nums2[j]
. The distance of the pair is j - i
.
Return the maximum distance of any valid pair (i, j)
. If there are no valid pairs, return 0
.
An array arr
is non-increasing if arr[i-1] >= arr[i]
for every 1 <= i < arr.length
.
Example 1:
Input: nums1 = [55,30,5,4,2], nums2 = [100,20,10,10,5]
Output: 2
Explanation: The valid pairs are (0,0), (2,2), (2,3), (2,4), (3,3), (3,4), and (4,4).
The maximum distance is 2 with pair (2,4).
Example 2:
Input: nums1 = [2,2,2], nums2 = [10,10,1]
Output: 1
Explanation: The valid pairs are (0,0), (0,1), and (1,1).
The maximum distance is 1 with pair (0,1).
Example 3:
Input: nums1 = [30,29,19,5], nums2 = [25,25,25,25,25]
Output: 2
Explanation: The valid pairs are (2,2), (2,3), (2,4), (3,3), and (3,4).
The maximum distance is 2 with pair (2,4).
Constraints:
-
1 <= nums1.length, nums2.length <= 105
-
1 <= nums1[i], nums2[j] <= 105
- Both
nums1
andnums2
are non-increasing.
SOLUTION:
# class Solution:
# def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:
# mdiff = 0
# m = len(nums1)
# n = len(nums2)
# nums1min = [0] * m
# nums2max = [0] * n
# curr = 0
# for i in range(m):
# if nums1[i] < nums1[curr]:
# curr = i
# nums1min[i] = curr
# curr = n - 1
# for i in range(n - 1, -1, -1):
# if nums2[i] > nums2[curr]:
# curr = i
# nums2max[i] = curr
# print()
# k = min(m, n)
# for i in range(k):
# mdiff = max(mdiff, nums2max[i] - nums1min[i])
# return mdiff
import bisect
class Solution:
def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:
mdiff = 0
m = len(nums1)
n = len(nums2)
nums2.reverse()
for i in range(m):
j = n - bisect.bisect_left(nums2, nums1[i]) - 1
mdiff = max(mdiff, j - i)
return mdiff
Top comments (0)