You are given a 0-indexed integer array nums
. An index i
is part of a hill in nums
if the closest non-equal neighbors of i
are smaller than nums[i]
. Similarly, an index i
is part of a valley in nums
if the closest non-equal neighbors of i
are larger than nums[i]
. Adjacent indices i
and j
are part of the same hill or valley if nums[i] == nums[j]
.
Note that for an index to be part of a hill or valley, it must have a non-equal neighbor on both the left and right of the index.
Return the number of hills and valleys in nums
.
Example 1:
Input: nums = [2,4,1,1,6,5]
Output: 3
Explanation:
At index 0: There is no non-equal neighbor of 2 on the left, so index 0 is neither a hill nor a valley.
At index 1: The closest non-equal neighbors of 4 are 2 and 1. Since 4 > 2 and 4 > 1, index 1 is a hill.
At index 2: The closest non-equal neighbors of 1 are 4 and 6. Since 1 < 4 and 1 < 6, index 2 is a valley.
At index 3: The closest non-equal neighbors of 1 are 4 and 6. Since 1 < 4 and 1 < 6, index 3 is a valley, but note that it is part of the same valley as index 2.
At index 4: The closest non-equal neighbors of 6 are 1 and 5. Since 6 > 1 and 6 > 5, index 4 is a hill.
At index 5: There is no non-equal neighbor of 5 on the right, so index 5 is neither a hill nor a valley.
There are 3 hills and valleys so we return 3.
Example 2:
Input: nums = [6,6,5,5,4,1]
Output: 0
Explanation:
At index 0: There is no non-equal neighbor of 6 on the left, so index 0 is neither a hill nor a valley.
At index 1: There is no non-equal neighbor of 6 on the left, so index 1 is neither a hill nor a valley.
At index 2: The closest non-equal neighbors of 5 are 6 and 4. Since 5 < 6 and 5 > 4, index 2 is neither a hill nor a valley.
At index 3: The closest non-equal neighbors of 5 are 6 and 4. Since 5 < 6 and 5 > 4, index 3 is neither a hill nor a valley.
At index 4: The closest non-equal neighbors of 4 are 5 and 1. Since 4 < 5 and 4 > 1, index 4 is neither a hill nor a valley.
At index 5: There is no non-equal neighbor of 1 on the right, so index 5 is neither a hill nor a valley.
There are 0 hills and valleys so we return 0.
Constraints:
-
3 <= nums.length <= 100
-
1 <= nums[i] <= 100
SOLUTION:
class Solution:
def countHillValley(self, nums: List[int]) -> int:
n = len(nums)
groups = []
i = 0
while i < n:
ctr = 1
while i < n - 1 and nums[i] == nums[i + 1]:
i += 1
ctr += 1
i += 1
groups.append((nums[i - 1], ctr))
ctr = 0
m = len(groups)
for i in range(1, m - 1):
left = groups[i][0] > groups[i - 1][0]
right = groups[i][0] > groups[i + 1][0]
if not left ^ right:
ctr += 1
return ctr
Top comments (0)