Given the head
of a linked list, return the node where the cycle begins. If there is no cycle, return null
.
There is a cycle in a linked list if there is some node in the list that can be reached again by continuously following the next
pointer. Internally, pos
is used to denote the index of the node that tail's next
pointer is connected to (0-indexed). It is -1
if there is no cycle. Note that pos
is not passed as a parameter.
Do not modify the linked list.
Example 1:
Input: head = [3,2,0,-4], pos = 1
Output: tail connects to node index 1
Explanation: There is a cycle in the linked list, where tail connects to the second node.
Example 2:
Input: head = [1,2], pos = 0
Output: tail connects to node index 0
Explanation: There is a cycle in the linked list, where tail connects to the first node.
Example 3:
Input: head = [1], pos = -1
Output: no cycle
Explanation: There is no cycle in the linked list.
Constraints:
- The number of the nodes in the list is in the range
[0, 104]
. -
-105 <= Node.val <= 105
-
pos
is-1
or a valid index in the linked-list.
Follow up: Can you solve it using O(1)
(i.e. constant) memory?
SOLUTION:
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution:
def detectCycle(self, head: Optional[ListNode]) -> Optional[ListNode]:
if not head or not head.next:
return None
slow = head
fast = head
while fast and fast.next:
slow, fast = slow.next, fast.next.next
if slow == fast:
break
if slow != fast:
return None
slow = head
while slow != fast:
slow, fast = slow.next, fast.next
return slow
Top comments (0)