DEV Community

Abhishek Chaudhary
Abhishek Chaudhary

Posted on

Count the Hidden Sequences

You are given a 0-indexed array of n integers differences, which describes the differences between each pair of consecutive integers of a hidden sequence of length (n + 1). More formally, call the hidden sequence hidden, then we have that differences[i] = hidden[i + 1] - hidden[i].

You are further given two integers lower and upper that describe the inclusive range of values [lower, upper] that the hidden sequence can contain.

  • For example, given differences = [1, -3, 4], lower = 1, upper = 6, the hidden sequence is a sequence of length 4 whose elements are in between 1 and 6 (inclusive).
    • [3, 4, 1, 5] and [4, 5, 2, 6] are possible hidden sequences.
    • [5, 6, 3, 7] is not possible since it contains an element greater than 6.
    • [1, 2, 3, 4] is not possible since the differences are not correct.

Return the number of possible hidden sequences there are. If there are no possible sequences, return 0.

Example 1:

Input: differences = [1,-3,4], lower = 1, upper = 6
Output: 2
Explanation: The possible hidden sequences are:

  • [3, 4, 1, 5]
  • [4, 5, 2, 6] Thus, we return 2.

Example 2:

Input: differences = [3,-4,5,1,-2], lower = -4, upper = 5
Output: 4
Explanation: The possible hidden sequences are:

  • [-3, 0, -4, 1, 2, 0]
  • [-2, 1, -3, 2, 3, 1]
  • [-1, 2, -2, 3, 4, 2]
  • [0, 3, -1, 4, 5, 3] Thus, we return 4.

Example 3:

Input: differences = [4,-7,2], lower = 3, upper = 6
Output: 0
Explanation: There are no possible hidden sequences. Thus, we return 0.

Constraints:

  • n == differences.length
  • 1 <= n <= 105
  • -105 <= differences[i] <= 105
  • -105 <= lower <= upper <= 105

SOLUTION:

class Solution:
    def numberOfArrays(self, differences: List[int], lower: int, upper: int) -> int:
        pos = [0]
        for d in differences:
            pos.append(pos[-1] + d)
        least = min(pos)
        pos = [p + lower - least for p in pos]
        return max(upper - max(pos) + 1, 0)
Enter fullscreen mode Exit fullscreen mode

Top comments (0)